

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support
your product. This manual is the best copy we could find; it may be incomplete
or contain dated information. If we find a more recent copy in the future, we will
add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Our service centers may be able
to perform calibration if no repair parts are needed, but no other support from
Agilent is available. You will find any other available product information on the
Agilent Test & Measurement website, www.tm.agilent.com.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that
Hewlett-Packard's former test and measurement, semiconductor products and
chemical analysis businesses are now part of Agilent Technologies. We have
made no changes to this manual copy. In other documentation, to reduce
potential confusion, the only change to product numbers and names has been in
the company name prefix: where a product number/name was HP XXXX the
current name/number is now Agilent XXXX. For example, model number
HP8648A is now model number Agilent 8648A.

http://www.tm.agilent.com/

User’s Guide for the Graphical User Interface

MC68040/EC040/LC040
Emulator/Analyzer
(HP 64783A/B)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

ii

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1
Edition 2
Edition 3

B3090-97000, March 1993
B3090-97001, October 1993
B3090-97002, January 1994

Safety and Certification and Warranty

Safety information, and certification and warranty information can be found on the
pages before the back cover.

iii

The HP 64783A/B Emulator

HP 64700
Instrumentation
Card Cage

HP 64783A/B
68040/EC040/LC040 Emulator

Demo Target System

 HP 9000 Series 300
 Host System

iv

The HP 64783A/B Emulator

Description

The HP 64783A/B emulator supports the Motorola 68040, 68EC040, and 68LC040
microprocessors operating at clock speeds up to 33 MHz (HP 64783A) or 40 MHz
(HP 64783B). Differences between the three microprocessors are shown in the
table below:

The emulator uses an MC68040 microprocessor and is pin-for-pin compatible with
the MC68EC040 and MC68LC040 microprocessors. Refer to the end of Chapter 4,
"Using the Emulator", for special considerations when using the emulator in target
systems designed with the MC68EC040 or MC68LC040.

Throughout this manual, the microprocessor will be referred to as the MC68040,
except where the three versions must be discussed separately.

Additionally, this emulator supports development of target systems using the
MC68040 together with up to 31 MC68360’s in slave mode. Refer to the end of
Chapter 4, "Using the Emulator", for an explanation of this emulator’s support for
the MC68360 slave mode.

The emulators plug into the modular HP 64700 instrumentation card cage and offer
80 channels of processor bus analysis with the HP 64704A or HP 64794A
emulation-bus analyzer. Flexible memory configurations are offered from zero
through two megabytes of emulation memory. High performance download is
achieved through the use of a LAN or RS-422 interface. An RS-232 port and a
firmware-resident interface allow debugging of a target system at remote locations.

For software development, the HP AxCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard

Motorola Processor Includes MMU Includes FPU

68040
68EC040
68LC040

yes
no
yes

yes
no
no

v

C compiler, assembler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.

If your software development platform is a personal computer, support is available
from several third party vendors. This capability is provided through the HP
64700’s ability to consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors,
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

Features

HP 64783A/B Emulator

• 16 to 33 MHz active probe emulator (HP 64783A)
• 20 to 40 MHz active probe emulator (HP 64783B)
• Supports MC68040, MC68EC040, and MC68LC040
• Supports burst and synchronous bus modes
• Symbolic support
• Number of breakpoints available:

– If specified at RAM addresses: unlimited;
– If specified at ROM addresses: eight.

• 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package

• Background and foreground monitors
• Simulated I/O with workstation interfaces
• Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex

File formats directly. (Symbols are available with IEEE-695 and HP-OMF
formats.)

• Multiprocessor emulation
– synchronous start of 32 emulation sessions
– cross triggerable from another emulator, logic analyzer, or oscilloscope

• Demo board and self test module included

vi

Emulation-bus analyzer

• 80-channel emulation-bus analyzer, which uses the static deMMUer of the
MC68040 emulator

• Postprocessed, dequeued trace with symbols
• Eight events, each consisting of address, status, and data comparators
• Events may be sequenced eight levels deep and can be used for complex

trigger qualification and selective store

Emulation memory

• 256 Kbyte, 512 Kbyte, 1 Mbyte, 1.25 Mbyte and 2 Mbyte memory
configurations available

• 4 Kbytes of dual-ported memory available if you use the background monitor.
• Mapping resolution is 256 bytes
• No wait states required by the emulator for processor speeds up to 25 MHz
• One wait state required in all accesses above 25 MHz

vii

In This Book

This manual covers the HP 64783A/B emulator. All information in the manual
applies to all three Microprocessor versions, unless it is marked with the processor
name (MC68040, MC68EC040, or MC68LC040).

Part 1, “Quick Start Guide,” tells you how to start using the emulator.

1. Getting Started
2. Solving Quick Start Problems

Part 2, “User’s Guide,” describes how to use the emulator/analyzer interface to
perform a variety of tasks.

3. Using the Emulator/Analyzer Interface
4. Using the Emulator
5. Using the Emulation-Bus Analyzer
6. Making Coordinated Measurements
7. Making Software Performance Measurements
8. Configuring the Emulator (to be performed before you run a program in
 emulation)
9. Solving Problems

Part 3, “Reference Guide,” provides detailed information on emulator functions,
commands and environments.

10. Using MC68040 Memory Management
11. Emulator Commands
12. Emulator Messages
13. Setting X Resources
14. The SPARCsystem Interface
15. Microtec Language Tools used with the Emulator
16. Specifications and Characteristics

Part 4. "Concepts Guide," discusses X Resources and the Graphical User Interface.

Part 5, “Installation and Service Guide,” shows you how to install and maintain the
emulator.

18. Installation and Service
19. Installing/Updating Emulator Firmware

viii

Contents

Part 1 Quick Start Guide

In This Part 2

1 Getting Started

The Emulator/Analyzer Interface — At a Glance 4
The Softkey Interface 4
Softkey Interface Conventions 5
The Graphical User Interface 6
Graphical User Interface Conventions 8

The Getting Started Tutorial 11
Step 1: Start the demo 12
Step 2: Display the program in memory 14
Step 3: Run from the transfer address 15
Step 4: Step high-level source lines 16
Step 5: Display the previous mnemonic display 17
Step 6: Run until an address 18
Step 7: Display data values 19
Step 8: Display registers 20
Step 9: Step assembly-level instructions 21
Step 10: Trace the program 22
Step 11: Display memory at an address in a register 24
Step 12: Patch assembly language code 25

ix

The MMU Demonstration 28
Step 13: Obtain the normal interface and MMU demo 29
Step 14: See the setup of the MMU 31
Step 15: Look at the translation table details for a single logical address 32
Step 16: Look at details of MMU Table C 33
Step 17: Output characters on the seven-segment display 34
Step 18: Take a trace of emulation activity 35
Step 19: Prepare the deMMUer so you can see symbolic addresses in the trace list
 36
Step 20: Take a new trace 37
Step 21: Inverse assemble the trace list 38
Step 22: Reset the emulator 39

2 Solving Quick Start Problems
If the desired emulator interface won’t start 42
If the text-based Softkey Interface won’t start under X-Windows 42
If you can’t load the demo program 43
If you can’t display the program 44

Part 2 Using The Emulator

Making Measurements 46
In This Part 2 46

3 Using the Emulator/Analyzer Interface
Maximum Number of Windows 49
Activities that Occur in the Windows 49
Using Multiple Terminals 51

Contents

x

Starting the Emulator/Analyzer Interface 52
To see emulator/analyzer availability before interface startup 52
To start the emulator/analyzer interface 53
To start the interface using the default configuration 54
To execute a command file at interface startup 55
To unlock an interface that was left locked by another user 56

Opening Other HP 64700 Interface Windows 57
To open additional emulator/analyzer windows 57
To open the high-level debugger interface window 58
To open the software performance analyzer (SPA) interface window 58

Entering Commands 59
To turn the command line on or off in the Graphical User Interface 59
To enter commands on the command line 60
To edit the command line using the command line pushbuttons on the Graphical
User Interface 61
To edit the command line using the command line popup menu 62
To edit the command line using the keyboard 63
To recall commands 63
To execute a completed command 64
To get online help on commands 65
To display the error log 66
To display the event log 66

Using Special Features of the Graphical User Interface 67
To choose a pulldown menu item using the mouse (method 1) 67
To choose a pulldown menu item using the mouse (method 2) 68
To choose a pulldown menu item using the keyboard 69
To choose popup menu items 70
To place values into the entry buffer using the keyboard 71
To copy-and-paste to the entry buffer 71
To recall entry buffer values 74
To use the entry buffer 74
To copy-and-paste from the entry buffer to the command line entry area 75
To use the action keys 76
To use dialog boxes 76

Using display-control features of the Softkey Interface 80

Contents

xi

Copying information to a file or printer 81

Exiting the Emulator/Analyzer Interface 83
To end a single window in the interface 83
To end the emulation session in all windows 84

Creating and Executing Command Files 85
Passing Parameters to Command Files 85
Using &ArG_lEfT in Command Files 86
Using UNIX Commands and Scripts with Command Files 86
Using Shell Variables with Command Files 86
Restrictions on Commands 87
Status Line Updates 87
Nesting Command Files 87
Pausing Command Files 87
Placing Comments in Command Files 88
Continuing Command File Lines 88
Specifying a Search of Several Command File Directories 88
To create a command file by logging commands 88
To create a command file by using a text editor 90
To execute (or playback) a command file 91
To nest command files 92
To pause command file execution 93
To add a comment to a command file 94
To pass parameters to a command file 95
To increase flexibility of command files by using &ArG_lEfT 97
To specify the order of searching several command file directories (HP64KPATH)
 98

Forwarding Commands to Other HP 64700 Interfaces 100
To forward commands to the high-level debugger 100
To forward commands to the software performance analyzer 101

Accessing the Terminal Interface 102
To display the Terminal Interface screen 103
To copy the Terminal Interface screen contents to a file 103
To enter Terminal Interface commands 104
To get help on Terminal Interface commands 106

Contents

xii

Accessing the Operating System 107
To set environment variables 107
To enter UNIX commands 108
To display the name of the emulation module 109

4 Using the Emulator

The Emulator And Its Applications 112
The demo Application 113
To build programs 113
To configure the emulator 115

Loading and Storing Programs 116
To load a program 116
To load the demo program 118
To store a program 119
To edit files 120

Using Symbols 123
To load a symbol database 124
To display global symbols 125
To display local symbols 126
To display the parent symbol of a symbol 128
To copy and paste a full symbol name to the entry buffer 129
To enter a symbol 130
To display the current directory and current working symbol 131
To change the directory context 132
To change the current working symbol context 132

Contents

xiii

Accessing Processor Memory Resources 134
To display program data structures 134
To display only source lines 136
To display intermixed source lines 137
To display symbols without source lines 138
To display absolute addresses 139
To display memory in byte format 140
To display memory in word format 141
To display memory in long word format 142
To display memory in mnemonic format 143
To return to the previous mnemonic display 144
To display memory in real number form 145
To redisplay memory locations 146
To display memory repetitively 146
To modify memory 147

Using Processor Run Controls 150
To run a program 150
To run programs from the transfer address 152
To run programs from reset 152
To run programs until a selected address occurs 153
To break to the monitor 154
To step the processor 155
To reset the processor 158

Viewing and Modifying Registers 159
To display registers 159
To modify registers 161

Contents

xiv

Using Execution Breakpoints 163
Setting execution breakpoints in RAM 163
Setting execution breakpoints in ROM 164
Execution breakpoints in ROM when the MMU manages memory 164
Using temporary and permanent breakpoints 165
To enable execution breakpoints 166
To disable an execution breakpoint 166
To set a permanent breakpoint 167
To set a temporary breakpoint 168
To set a ROM breakpoint in RAM 169
To clear an execution breakpoint 170
To clear all execution breakpoints 172
To display the status of all execution breakpoints 172

Changing the Interface Settings 174
To set the source/symbol modes 174
To set the display modes 175
Source/Symbols View 176
Field Widths 176
Auto Update 176

Using the Emulator In-Circuit 177
To install the emulation probe 177
To power-on the emulator and your target system 179
To probe target system sockets 179

Using The Emulator With MMU Enabled 180
To enable the processor memory management unit 180
To view the present logical-to-physical mappings 181
To see translation details for a single logical address 183
To see details of a translation table used to map a selected logical address 185

Using an FPU with an MC68EC040 or MC68LC040 Target System
 187

Contents

xv

Using M68040 support for the M68360 Companion Mode 188
To set up custom M68040 Action Keys to support the M68360 Companion Mode
 189
Tasks you may wish to perform when using the M68040/M68360 companion
Mode 194
For more information 196

5 Using the Emulation-Bus Analyzer

Power of the Emulation-Bus Analyzer 198

Making Simple Trace Measurements 199
To start a trace measurement 200
To stop a trace measurement 201
To display the trace list 201
To display the trace status 203
To change the trace depth 204
To modify the last trace command entered 205
To define a simple trigger qualifier 206
To specify a trigger and set the trigger position 207
To define a simple storage qualifier 208

Displaying the Trace List 209
To disassemble the trace list 212
To specify trace disassembly options 213
To specify trace dequeueing options 215
To display the trace without disassembly 217
To display symbols in the trace list 218
To display source lines in the trace list 220
To change the column width 221
To select the type of count information in the trace list 222
To offset addresses in the trace list 224
To reset the trace display defaults 225
To move through the trace list 225
To display the trace list around a specific line number 226
To change the number of states available for display 227
To display program memory associated with a trace list line 228
To open an edit window into the source file associated with a trace list line 228

Contents

xvi

Analyzing Program Execution When The MMU Is Enabled 229
To program the deMMUer in a static memory system 229
To store a deMMUer setup file 231
To load the deMMUer from a deMMUer setup file 231
To trace program execution in physical address space 232

Making Complex Trace Measurements 233
To use address, data, and status values in trace expressions 238
To enter a range in a trace expression 239
To use the sequencer 240
To specify a restart term 241
To specify trace windowing 242
To specify both sequencing and windowing 243
To count states or time 244
To define a storage qualifier 245
To define a prestore qualifier 246
To trace activity leading up to a program halt 247
To modify the trace specification 248
To repeat the previous trace command 249
To capture a continuous stream of program execution no matter how large your
program 250

Saving and Restoring Trace Data and Specifications 254
To store a trace specification 254
To store trace data 255
To load a trace specification 256
To load trace data 257

Saving and Restoring DeMMUer Setup Files 258
To store a DeMMUer setup file 258
To load a DeMMUer setup file 258

Using Basis Branch Analysis 259
To store BBA data to a file 259

Contents

xvii

6 Making Coordinated Measurements

The Elements of Coordinated Measurements 262
Comparison Between CMB and BNC Triggers 264

Setting Up for Coordinated Measurements 265
To connect the Coordinated Measurement Bus (CMB) 265
To connect to the rear panel BNC 267

Starting/Stopping Multiple Emulators 269
To enable synchronous measurements 269
To start synchronous measurements 270
To disable synchronous measurements 270

Using Trigger Signals 271
To drive the emulation-bus analyzer trigger signal to the CMB 273
To drive the emulation-bus analyzer trigger signal to the BNC connector 274
To break emulator execution on signal from CMB 275
To break emulator execution on signal from BNC 276
To arm the emulation-bus analyzer on signal from CMB 277
To arm the emulation-bus analyzer on signal from BNC 277

Making Example Measurements 278
To start a simultaneous program run on two emulators 278
To trigger one emulation-bus analyzer with another 279
To break to the monitor on an analyzer trigger signal 280

7 Making Software Performance Measurements

Using the Software Performance Measurement Tool 282
Use the Software Performance Analyzer (SPA) for more capability 282

Understanding activity measurements 283

Understanding duration measurements 286

Contents

xviii

To use the Software Performance Measurement Tool 287
Step 1. Set up the trace command 288
Step 2. Initialize the performance measurement 289
Step 3. Run the performance measurement 293
Step 4. End the performance measurement 294
Step 5. Generate the performance measurement report 295

8 Configuring the Emulator

Using the Configuration Interface 303
To start the configuration interface 304
To modify a configuration section 306
To apply configuration changes to the emulator 308
To store configuration changes to a file 308
To change the configuration directory context 309
To display the configuration context 310
To access help topics 310
To access context sensitive (f1) help 311
To exit the configuration interface 311
To load a configuration 312

Modifying the Monitor Setup 313
To select the monitor type 314
To select the monitor filename 315
To select the monitor address 316
To select the monitor interrupt priority level 317
To select whether or not the emulator will terminate monitor bus cycles 318
To select if there will be a keep-alive function, its address, and function code 319

Mapping Memory 320
To add memory map entries 322
To modify memory map entries 325
To delete memory map entries 327
To characterize unmapped ranges 327
To map memory ranges in which data is not loaded into the caches 328
To map memory in which the emulator will terminate bus cycles 328
To map memory to be stored within the dual-port memory 329

Contents

xix

Configuring the Emulator General Items Screen 330
To enable/disable target system interrupts 331
To enable/disable the instruction and data caches 332
To enable/disable the memory management unit (MMU) 333
To specify whether the clock speed of the emulation bus is greater than 25 MHz
334
To restrict the emulator to real-time runs 335
To enable/disable breaks on writes to ROM 336
To specify the memory access size 337
To specify the initial value of the stack pointer 338
To specify the initial value of the program counter 339

Setting the Trace Options 340
To include/exclude background monitor execution in the trace 341
To identify the data rate of your emulation system for the 1K analyzer 341

Modifying the Simulated IO Configuration Items 343

Modifying the Interactive Measurement Specification Configuration
Items 344
To select whether the card cage rear panel BNC is connected to the Trig1 or Trig2
or both signals 345
To select whether the coordinated measurement bus is connected to the Trig1 or
Trig2 or both signals 346
To select whether the emulator will allow a signal on Trig2 to initiate a break from
target program execution 347
To select whether or not the emulation-bus analyzer will operate with, or ignore,
the Trig2 line of the coordinated measurement bus. 348

Providing MMU Address Translation for the Foreground Monitor
349
Locating the Foreground Monitor using the MMU Address Translation Tables
351

Contents

xx

9 Solving Problems
If the emulator appears to be malfunctioning 354
If the trace listing opcode column contains only the words "dma long write (retry)"
repeatedly 355
If the analyzer fails to trigger on a program address 355
If the analyzer triggers on a program address when it should not 356
If trace disassembly appears to be partially incorrect 356
If there are unexplained states in the trace list 357
If you see negative time or negative states in the trace list 358
If the analyzer won’t trigger 358
If the emulator won’t work in a target system 359
If you see multiple guarded memory accesses 359
If you suspect that the emulator is broken 360
If you have trouble mapping memory 361
If emulation memory behavior is erratic 361
If you’re having problems with DMA 362
If you’re having problems with emulation reset 362
If the deMMUer runs out of resources during the loading process 363
If verbose mode shows less than eight mappings but the deMMUer is "out of
resources" 364
If you only see physical memory addresses in the analyzer measurement results
364
If the deMMUer is loaded but you still get physical addresses for some of your
address space 365
If you can’t break into the monitor after you enable the MMU 366
If the target system exhibits unexpected behavior after executing a breakpoint
366

Contents

xxi

Part 3 Reference

In This Part 368

10 Using Memory Management

Understanding Emulation and Analysis Of The Memory
Management Unit 370
Terms And Conditions You Need To Understand 370
Logical vs Physical 370
What are logical addresses? 371
What are physical addresses? 371
Static and dynamic system architectures 371
Static system example 371
Non-paged dynamic system example 371
Paged dynamic system example 372
Where Is The MMU? 373
Using Supervisor and User Privilege Modes 374
How the MMU is enabled 374
Hardware enable 374
Software enable 375
Restrictions when using the emulator with the MMU turned on 375
How the MMU affects the way you compose your emulation commands 376

Seeing Details of the MMU Translations 377
How the emulator helps you see the details of the MMU mappings 377
Supervisor/user address mappings 379
Translation details for a single logical address 380
Address mapping details 380
Status information 381
Table details for a selected logical address 382

Contents

xxii

Using the DeMMUer 383
What part of the emulator needs a deMMUer? 383
What would happen if the analyzer didn’t get help from the deMMUer? 383
How does the deMMUer serve the analyzer? 383
Reverse translations are made in real time 384
DeMMUer options 384
What the emulator does when it loads the deMMUer 385
Restrictions when using the deMMUer 386
Keep the deMMUer up to date 386
The target program is interrupted while the deMMUer is being loaded 386
The analyzer must be off 386
Expect strange addresses if you analyze physical memory with multiple logical
mappings 386
Resource limitations 388
Example to show resource limitations 389
The Emulation Memory Map Can Help 389
Dividing the deMMUer table between user and supervisor address space 391

Solving Problems 392
Using the "display mmu_translations" command to overcome plug-in problems
392
Use the analyzer with the deMMUer to find MMU mapping problems 393
Failure caused by access to guarded memory 393
Failure due to system halt 394
Execution breakpoint problems 395
A "can’t break into monitor" example 395

11 Emulator Commands

How Pulldown Menus Map to the Command Line 401

Emulator Configuration: Memory Map 405

How Popup Menus Map to the Command Line 406

Syntax Conventions 408
Oval-shaped Symbols 408
Rectangular-shaped Symbols 408
Circles 409
The —NORMAL— Key 409

Contents

xxiii

Summary of Commands 410
break 411
cmb_execute 412
copy 413
COUNT 419
display 421
DISPLAY MEMORY 427
DISPLAY MMU 431
DISPLAY TRACE 434
end 439
—EXPR— 441
FCODE 444
HELP 445
load 446
log_commands 449
modify 450
performance_measurement_end 457
performance_measurement_initialize 458
performance_measurement_run 460
pod_command 461
QUALIFIER 463
reset 466
run 467
SEQUENCING 469
set 471
specify 477
step 479
stop_trace 481
store 482
—SYMB— 484
trace 492
TRIGGER 496
<UNIX_COMMAND> 498
wait 499
WINDOW 501

12 Emulator Error Messages

Emulator error messages 504

Contents

xxiv

13 Setting X Resources

Setting X Resources 554
To modify the Graphical User Interface resources 556
To use customized scheme files 560
To set up custom action keys 562
To set initial recall buffer values 563
To set up demos or tutorials 565

14 The SPARCsystem Graphical User Interface and Softkey Interface

HP-UX/SunOS product number cross reference 571
Using your SPARCsystem keyboard 572
Keyboard template 575

15 Microtec Language Tools Used With MC68040 Emulators

Using Microtec Language Tools 579
To use the Microtec commands 580
Assembler defaults 581
Linker defaults 581
Librarian defaults 582
The Microtec MCC68K compiler 582

16 Specifications and Characteristics

Processor Compatibility 584
Electrical 584
Motorola JTAG 584
HP 64783A/B Maximum Ratings 585
HP 64783A/B Electrical Specifications 586
HP 64783A/B Clock AC Timing Specifications 588
HP 64783A/B Output AC Timing Specifications 589
HP 64783A/B Input AC Timing Specifications 591
Physical 594
Environmental 595
BNC, labeled TRIGGER IN/OUT 595
Communications 596

Contents

xxv

Part 4 Concept Guide

In This Part 598

17 X Resources and the Graphical User Interface

X Resources and the Graphical User Interface 600

X Resource Specifications 601
Resource Names Follow Widget Hierarchy 601
Class Names or Instance Names Can Be Used 602
Wildcards Can Be Used 602
Specific Names Override General Names 603

How X Resource Specifications are Loaded 604
Application Default Resource Specifications 604
User-Defined Resource Specifications 604
Load Order 605

Scheme Files 606
Resources for Graphical User Interface Schemes 606
Scheme File Names 607
Load Order for Scheme Files 607
Custom Scheme Files 608

Contents

xxvi

Part 5 Installation and Service Guide

In This Part 610

18 Connecting the Emulator to a Target System

Plugging The Emulator Into A Target System 612
Understanding an emulator 612
Equivalent circuits 614
Obtaining the terminal interface 616
Connecting the emulator to the target system 617

Verifying Operation Of The Emulator In Your Target System 619
Running the emulator configured like the processor 620
To verify operation of the target system 621
Interpreting the trace list 630
Fixing timing problems 632
Installing the emulator in a target system without known good software 633

Contents

xxvii

Installing Emulator Features 635
Evaluating the reset facilities 635
Installing the background monitor 637
Resetting into the background monitor 637
Dealing with keep-alive circuitry while using the background monitor 639
Testing memory accesses with the background monitor 640
Running a program from the background monitor 641
Breaking into the background monitor 644
Exiting the background monitor 645
Software breakpoint entry into the background monitor 646
Stepping with the background monitor 648
Installing the foreground monitor 651
Resetting into the foreground monitor 652
Dealing with keep-alive circuitry by using the custom foreground monitor 654
Testing memory access with the foreground monitor 655
Running a program from the foreground monitor 656
Breaking into the foreground monitor 658
Exiting the foreground monitor 660
Software breakpoint entry into the foreground monitor 660
Stepping with the foreground monitor 663
Installing emulation memory 665

19 Installation and Service

Installation 668

Installing Hardware 670
Step 1. Install optional memory modules on Deep Analyzer card, if desired 672
Observe antistatic precautions 672
Step 2. Connect the Emulator Probe Cables 674
Step 3. Install Boards into the HP 64700 Card Cage 677
Step 4. Install emulation memory modules on emulator probe 689
Step 5. Connect the emulator probe to the demo target system 693
Step 6. Apply power to the HP 64700 695

Connecting the HP 64700 to a Computer or LAN 699

Contents

xxviii

Installing HP 9000 Software 700
Step 1. Install the software from the media 700
Step 2. Verify the software installation 703
Step 3a. Start the X server and the Motif Window Manager (mwm) 704
Step 3b. Start HP VUE 704
Step 4. Set the necessary environment variables 705

Installing Sun SPARCsystem Software 707
Step 1. Install the software from the media 707
Step 2. Start the X server and OpenWindows 708
Step 3. Set the necessary environment variables 708
Step 4. Verify the software installation 710
Step 5. Map your function keys 711
Step 6. Restart the window system 712
Step 7. Run the interface in a window 712

Verifying the Installation 713
Step 1. Determine the logical name of your emulator 713
Step 2. Start the interface with the
emul700 command 714
Step 3. Step through the demo with the Action Keys 717
Step 4. Exit the Graphical User Interface 717
Step 5. Verify the performance of the emulator 718
What is pv doing to the Emulator? 720
Troubleshooting 721

Parts List 722
What is an Exchange Part? 722

20 Installing/Updating Emulator Firmware
To update emulator firmware with "progflash" 727
To display current firmware version information 730
If there is a power failure during a firmware update 731

Glossary

Index

Contents

xxix

xxx

Part 1

Quick Start Guide

1

Quick Start Guide

In This Part

This part describes how to quickly become productive with the emulation system.

Part 1

2

1

Getting Started

3

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface.
Some interface features include pull-down and pop-up menus, point and click
setting of breakpoints, cut and paste, on-line help, customizable action keys, and
pop-up recall buffers.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Display area.

Status line.

Command line.

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated I/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

Chapter 1: Getting Started

4

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

Softkey interface commands are executed by pressing the carriage return key on the
keyboard.

Chapter 1: Getting Started

5

The Graphical User Interface

Menu bar.

Action keys.

Entry buffer.

Entry buffer recall
pushbutton.

Display area.

Scroll bar.

Status line.

Command Line:
Command line
entry area.

Softkey
pushbuttons.

Command pushbuttons. Includes
command recall pushbutton.

Cursor pushbuttons for command line
area control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

Chapter 1: Getting Started

6

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the
entry buffer are used in that command. You can type values into the entry buffer,
or you can cut and paste values into the entry buffer from the display area or from
the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall pushbutton. Allows you to recall entry buffer values that
have been predefined or used in previous commands. When you click on the entry
buffer Recall pushbutton, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, MMU translation tables, analyzer
traces, registers, breakpoints, status, simulated I/O, global symbols, local symbols,
pod commands (the emulator’s underlying Terminal Interface), error log, or display
log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold the select mouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and hold the select mouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

• Command line entry area. Allows you to enter emulator commands from the
command line.

• Softkey pushbuttons. Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
the select mouse button to access the Command Line popup menu.

• Command pushbuttons (includes command recall pushbutton). The
command Return pushbutton is the same as pressing the carriage return key —
it sends the command in the command line entry area to the emulator/analyzer.

Chapter 1: Getting Started

7

The command Recall pushbutton allows you to recall previous or predefined
commands. When you click on the command Recall pushbutton, a dialog box
appears that allows you to select a command.

• Cursor pushbuttons for command line area control. Allows you to move
the cursor in the command line entry area forward or backward, clear to the
end of the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

Choose File→Load→Configuration

means to first display the File pulldown menu, then display the Load cascade
menu, then select the Configuration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

• The leftmost item in bold is the pulldown menu label.

• If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

• The last item on the right is the actual menu choice to be made.

Chapter 1: Getting Started

8

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, which
may have different conventions for mouse buttons and key names, the Graphical
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Descriptions

Generic
Button
Name

Bindings:

DescriptionHP 9000
Sun
SPARCsystem

paste left left Paste from the display
area to the entry buffer.

command pastemiddle1 middle1 Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton
select

left left Actuates pushbuttons
outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

Chapter 1: Getting Started

9

The following table shows the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem

menu select extend char extend char

insert insert char insert char

delete delete char delete char

left-arrow left arrow left arrow

right-arrow right arrow right arrow

up-arrow up arrow up arrow

down-arrow down arrow down arrow

escape escape escape

TAB TAB TAB

Chapter 1: Getting Started

10

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The screen displays shown in this
chapter were obtained by running the MC68040 emulator/analyzer.

The tutorial examples presented in this chapter make the following assumptions:

• The HP 64783 emulator and HP 64704 analyzer are installed into the
HP 64700 Card Cage.

• The HP 64700 is connected to the host computer.

• The emulator/analyzer interface software has been installed as outlined in
Chapter 19, "Installation and Service", and updated as outlined in Chapter 20,
"Installing/Updating Emulator Firmware".

• The emulator is operating out-of-circuit; that is, connected to the demo board,
not your target system, as outlined in Chapter 19, "Installation and Service".

• The emulator contains at least 60 Kbytes of emulation memory.

• Power is turned on to the instrumentation card cage and the LED on the demo
board is lit.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

Chapter 1: Getting Started

11

Step 1: Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

1 Change to the demo directory.

• Type:

$ cd /usr/hp64000/demo/debug_env/hp64783

Refer to the README file for more information on the demo program. Type:

$ more README

2 Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH, type:

$ echo $PATH

3 If the Graphical User Interface software is installed on the same computer or same
type of computer that you are using to run this "Getting Started" procedure, skip
this step and go directly to step 4 of this "Start the demo" procedure.

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file. For example, if the Graphical User Interface will be run on
an HP 9000 computer and be displayed on a Sun SPARCsystem computer, change
the platform scheme to "SunOS". This can’t be done in the demo directory
specified above because the Xdefaults.emul file is write-protected. You will need
to move it to a new directory and then change its permissions. The best way to do
this is to enter the command:

$ Startemul <logical_emul_name>

In the above command, <logical_emul_name> is the logical name of your
emulator, given in the HP 64700 emulator device table file
(/usr/hp64000/etc/64700tab.net).

Chapter 1: Getting Started
Step 1: Start the demo

12

After you give the "Startemul" command, you will be asked if you would like to
have the demo files copied to a different directory. Answer yes, and then specify
your own demo directory. The files will be copied to your own directory where
you can change the permissions on the Xdefaults.emul file so that you can edit it.
Type:

$ chmod 664 Xdefaults.emul

Now edit the Xdefaults.emul file. For this example, you would edit as follows:

$ vi Xdefaults.emul

!*.platformScheme: pc-xview
!*.platformScheme: HP-UX
*.platformScheme: SunOS
!*.platformScheme: HPxterm

Finally, save the Xdefaults.emul file with its modifications, and then start the
emulation session again from the demo directory where you have your custom
Xdefaults.emul file.

4 Start the emulator/analyzer demo with the command:

$ Startemul <logical_emul_name>

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (/usr/hp64000/etc/64700tab.net).
For the MC68040 emulator, it is usually m68040.

If you did not perform Step 3 of this "Start the demo" procedure, you will be asked
if you would like to have the demo files copied to a directory of your own
choosing. It is a good idea to have these files copied to your own demo directory if
you have space available in your system because it protects the original demo files
from changes you might make during this demo procedure.

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

Chapter 1: Getting Started
Step 1: Start the demo

13

Step 2: Display the program in memory

1 If the symbol "main" is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main".

2 Choose Display→Memory→Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic

The command line can be brought on screen by choosing Settings→Command
Line in the menu bar or placing the cursor in the display area and typing.

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

Chapter 1: Getting Started
Step 2: Display the program in memory

14

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

• Click on the Run Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor". You may have to click the select mouse
button on the STATUS line to obtain this message. When you run until an address,
a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the content of the current
program counter.

Chapter 1: Getting Started
Step 3: Run from the transfer address

15

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

1 To step a source line from the current program counter, click on the Step Source
action key, or choose Execution→Step Source→from PC.

Or, using the command line, enter:

step source

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

2 Step into the "init_system" function by continuing to step source lines by clicking
on the Step Source action key, by clicking on the Again action key which repeats
the previous command, by choosing Execution→Step Source→fromPC, or by
entering the step source command on the command line.

Chapter 1: Getting Started
Step 4: Step high-level source lines

16

Step 5: Display the previous mnemonic display

• Click on the Disp Src Prev action key, or choose Display→Memory→Mnemonic
Previous.

Or, using the command line, enter:

display memory mnemonic previous_display

This command is useful, for example, when you have stepped into a function that
you do not wish to look at—you can return the previous mnemonic display to the
screen and run your program until the source line that follows the function call is
reached. The next step in this procedure will show you how to make the emulator
run through the function "init_system();" and stop when "proc_spec_init();" is
reached.

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

17

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

• Position the mouse pointer over the line "proc_spec_init();". Press and hold the
select mouse button, and choose Run Until from the popup menu.

Or, using the command line, enter:

run until main."main.c": line 98

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

Chapter 1: Getting Started
Step 6: Run until an address

18

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click the paste mouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on the Disp Var () action key, or choose
Display→Data Values→Add()→int32.

Or, using the command line, enter:

display data , num_checks int32

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

Chapter 1: Getting Started
Step 7: Display data values

19

Step 8: Display registers

You can display the contents of the processor registers.

• Choose Display→Registers→BASIC.

Or, using the command line, enter:

display registers

Chapter 1: Getting Started
Step 8: Display registers

20

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

• To step one instruction from the current program counter, click on the Step Asm
action key, or choose Execution→Step Instruction→from PC.

Or, using the command line, enter:

step

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

21

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each bus cycle. The information seen at a
particular bus cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

1 Click on the Recall pushbutton to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

2 Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

3 To trigger on the address "main" and store states that occur after the trigger, choose
Trace→After () .

Or, using the command line, enter:

trace after long_aligned main

Notice the message "Emulation trace started" appears on the status line. This
shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

4 Run the emulator demo program from its transfer address by choosing
Execution→Run→from Transfer Address.

Or, using the command line, enter:

run from transfer_address

Chapter 1: Getting Started
Step 10: Trace the program

22

Notice that now the message on the status line is "Emulation trace complete". This
shows the trigger state has been found and the analyzer trace memory has been
filled.

5 To view the captured states, choose Display→Trace.

Or, using the command line, enter:

display trace

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

Chapter 1: Getting Started
Step 10: Trace the program

23

Step 11: Display memory at an address in a
register

1 Click on the Disp @REG action key. A "Define command file ..." dialog box
appears.

Or, using the command line, enter the name of the command file:

mematreg

A prompt appears in the command line.

2 Move the mouse pointer to the "Define command file ..." dialog box text entry area,
type "A7", and click the "OK" pushbutton.

Or, if the prompt is in the command line, enter:

A7

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

24

Step 12: Patch assembly language code

1 With "main" still in the entry buffer, click on the Run Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on the Disp Src & Asm action key.

3 Click on the Patch () action key.

A window appears and the vi editor is started. Under "ORG main", add the line:

LINK A6,#1234h

Exit out of the editor, saving your changes (using ’wq’).

The Patch () action key lets you patch code in your program. The file you just
edited is assembled, and the patch main menu appears. Type "a" beside "Enter
choice:", and then press your carriage return key to apply the patch.

Chapter 1: Getting Started
Step 12: Patch assembly language code

25

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

4 Click on the Patch () action key again.

A window running the vi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press your carriage return key to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

Chapter 1: Getting Started
Step 12: Patch assembly language code

26

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> through
<address>) before clicking on the Patch () action key, you can modify a patch
template file which allows you to insert as much or as little code as you wish.

6 Click on the Patch () action key again.

A window running the vi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
7FE0H. Edit the patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s
;
; Date : Fri Feb 12 14:06:06 MDT 1993
; Dir : /users/guest/demo/debug_env/hp64783
; Owner: guest
;
 INCLUDE PCHSINC.s
 ORG main+4
 BRA patch1 ;You may want to change this name!
 ORG 7FE0h ;You MUST set this address!
patch1 NOP
; !!!!!!!!! You may need to modify labels and operands of the !!!!!!!!!
; !!!!!!!!! following code to match your assembler syntax !!!!!!!!!
; !!!!!!!!! Patching Range: main+4 thru main+15
; !!!!!!!!! Insert new code here !!!!!!!!!
 JSR _proc_spec_init
 JSR _init_system
 BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes (’wq’).

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press your carriage return key to apply the patch.

You can step through the program to view execution of the patch. Place "main" in
the entry buffer and use the Step Source action key, or choose Execution→Step
Source→from ().

Or, using the command line, enter:

step source

Chapter 1: Getting Started
Step 12: Patch assembly language code

27

The MMU Demonstration

The remainder of this demonstration shows how the MC68040 emulator helps you
develop and analyze your target program within a memory system that is managed
by the MMU of the MC68040 processor.

The MMU demo program attempts to simulate a real target system to display
hexadecimal characters on the seven-segment display on the HP 64783A demo
board (used with HP 64783A and HP 64783B emulators). A simple operating
system uses interrupts to maintain a system clock and configures the MMU to
translate addresses and provide memory access protection. The operating system
waits for a hexadecimal string to be placed in "sysbuf" and then spawns a user task
to display each character on the demo board’s seven-segment display. The user
task interfaces with the operating system to set up an alarm timer and to output
individual characters to the display. The display of characters is interrupt driven.

This demo requires 128 Kbytes of emulation memory. The first 64-Kbyte block of
emulation memory is mapped to lower memory and corresponds to system ROM.
ROM space is translated 1:1 and is entirely write protected. The first half of ROM
contains privileged operating system code and is also protected against user mode
access. The second half of ROM is user accessible and contains shared library and
operating system interface functions. The second 64-Kbyte block of emulation
memory is mapped to upper memory and corresponds to system RAM. RAM
space is NOT translated 1:1 and has varying access protections. During bootup, the
operating system loads the user program, user data, and operating system data from
ROM into RAM after the MMU is enabled. The user program is loaded into the
first half of RAM and gets write-protected. The user data and stack is located in the
next quarter of RAM and has no access protections. The last quarter of RAM
contains operating system data and stack and is protected against user access. A
transparent translation register is used to provide a 1:1 address translation for the
emulation monitor located at 0xff000000. The following MMU translation display
summarizes all address translations:
Logical Address Physical Address Attributes
00000000..00007fff 00000000..00007fff@a S W (32K sprog)
00008000..0000ffff 00008000..0000ffff@a W (32K libc)
00010000..00017fff ffff0000..ffff7fff@a W (32K uprog)
00010000..0001bfff ffff8000..ffffBfff@a (16K udata)
0001C000..0001ffff ffffC000..ffffffff@a S (16K sdata)
ff000000..ffffffff ff000000..ffffffff@a TT (monitor)

Where:
 S = Supervisor access only.
 W = Write-protected.
 TT = Controlled by a transparent translation register.

Chapter 1: Getting Started
Step 12: Patch assembly language code

28

Read the README file in the mmudemo directory, which you will access next in
this demonstration procedure. The README file suggests tests you can make, in
addition to those shown in this chapter, with the demo program. These can help
you become more comfortable with use of the MMU in this emulator.

Step 13: Obtain the normal interface and MMU
demo

1 The MMU demo program is run from the normal interface of the MC68040
emulator/analyzer, not the special interface you used to run the "ecs" demo in the
first part of this chapter. If you still have the graphical user interface on screen,
choose File→Exit→Released.

If using the softkey interface, enter the command:

end release_system

2 Obtain the MMU demo directory by typing the command:

$cd /usr/hp64000/demo/debug_env/hp64783/mmudemo

3 Start the normal MC68040 emulator/analyzer with the command:

$emul700 <logical_emul_name>

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file that you used in the first
demonstration (Step 1, Substep 4 of this procedure).

4 Load the MMU demo program and start it running, as follows:

Choose File→Load→ Emulator Config ... In the file selection dialog box, select
/usr/hp64000/demo/debug_env/hp64783/mmudemo/demo.EA, and click OK.

Choose File→Load→Executable ... In the file selection dialog box, select
/usr/hp64000/demo/debug_env/hp64783/mmudemo/demo.x, and click OK.

Chapter 1: Getting Started
Step 13: Obtain the normal interface and MMU demo

29

Choose Execution→Run→from Reset.

Or, using the command line, enter the following commands:

load configuration demo.EA
load demo.x
set source memory_only_trace_on
run from reset

Chapter 1: Getting Started
Step 13: Obtain the normal interface and MMU demo

30

Step 14: See the setup of the MMU

• Choose Display→MMU Translations

• Or, using the command line, enter the following command:

display mmu_translations

The above commands let you see the present setup of the MMU. The MMU was
set up by the demo program when you first started it.

 Logical Address Physical Address Attributes
 000000000..000007fff 000000000..000007fff@a S W
 000008000..00000ffff 000008000..00000ffff@a W
 000010000..000017fff 0ffff0000..0ffff7fff@a W
 000018000..00001bfff 0ffff8000..0ffffbfff@a
 00001c000..00001ffff 0ffffc000..0ffffffff@a S
 0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

Note that the first and second ranges of logical addresses are translated 1:1 to their
physical addresses. The third, fourth, and fifth ranges of logical addresses are
translated to different physical addresses. The last range of logical addresses is
translated 1:1 to its corresponding range of physical addresses.

The "TT" attribute beside the last range of physical addresses indicates that it is
transparently translated by one of the transparent translation registers. The
emulation monitor occupies the first part of the last address range.

The transparent translation registers were used to provide a 1:1 translation for the
monitor because they are much easier to use. The demo program could have
created an appropriate entry in the MMU tables to provide the required translation
for the emulation monitor.

Chapter 1: Getting Started
Step 14: See the setup of the MMU

31

Step 15: Look at the translation table details for a
single logical address

• Choose Display→MMU Translations ... In the Display MMU Translations dialog
box, select MMU Tables, Address 18000h, and Table Level All. Then click OK.

• Or, using the command line, enter the following command:

display mmu_translations tables 18000h level all

The following display should appear. It shows how logical address 18000h is
translated through the MMU tables to its corresponding physical address ffff8000h.

 Logical Address (hex) 0 0 0 1 8 0 0 0
 Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 00000200 00000200 RESIDENT
 A 000 00000200 0000040b 00000400 y n RESIDENT
 B 000 00000400 0000060b 00000600 y n RESIDENT
 C 024 00000660 ffff801b ffff8000 n 00 n cw y y n RESIDENT

 Physical Address (hex) = ffff8000

When you are developing a virtual memory system, you will need to check the
translations of selected addresses. The MMU tables option of the Display→MMU
Translations ... command lets you do this.

• Try displaying the translation for a non-resident page, such as address 54321h.
Also, try using the memory command to access a non-resident page. The monitor
always recovers from its own exceptions generated during commands, and displays
a detailed error message.

Chapter 1: Getting Started
Step 15: Look at the translation table details for a single logical address

32

Step 16: Look at details of MMU Table C

• Choose Display→MMU Translations ... In the Display MMU Translations dialog
box, select MMU Tables, Address 18000h, and Table Level C (Page). Then click
OK.

• Or, using the command line, enter the following command:

display mmu_translations tables 18000h level C

The following display should appear. It shows the portion of MMU Table C that is
used to translate logical address 18000h.

 Logical Address (hex) 0 0 0 1 8 0 0 0
 Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 00000200 00000200 RESIDENT
 A 000 00000200 0000040b 00000400 y n RESIDENT
 B 000 00000400 0000060b 00000600 y n RESIDENT
 C 000 00000600 0000009f 00000000 n 00 y cw n y y RESIDENT
 C 001 00000604 00001087 00001000 n 00 y cw n n y RESIDENT
 C 002 00000608 00002087 00002000 n 00 y cw n n y RESIDENT
 C 003 0000060c 00003087 00003000 n 00 y cw n n y RESIDENT
 C 004 00000610 00004087 00004000 n 00 y cw n n y RESIDENT
 C 005 00000614 00005087 00005000 n 00 y cw n n y RESIDENT
 C 006 00000618 00006087 00006000 n 00 y cw n n y RESIDENT
 C 007 0000061c 00007087 00007000 n 00 y cw n n y RESIDENT
 C 008 00000620 0000800f 00008000 n 00 n cw n y y RESIDENT
 C 009 00000624 00009007 00009000 n 00 n cw n n y RESIDENT
 C 010 00000628 0000a007 0000a000 n 00 n cw n n y RESIDENT

Occasionally you will need to examine the content of one of the MMU translation
tables at the point where it is used to translate a particular logical address. The
Table Level selection in the MMU Translation dialog box lets you do this.

Chapter 1: Getting Started
Step 16: Look at details of MMU Table C

33

Step 17: Output characters on the seven-segment
display

1 Choose Settings→Command Line to turn on the command line, if you are using
the graphical user interface.

2 Using the command line, store the value of a hexadecimal string to be output on the
seven-segment display of the demo board. To see the digits
""0123456789AbCdEF" appear once, enter the following:

modify memory sysbuf string to "0123456789ABCDEF"

As soon as the operating system of the demo program detects that "sysbuf" has
been modified, it starts the user task to display each character in the string for 1/2
second. After the last character has been displayed, the user task returns to the
operating system and "sysbuf" can be modified again.

3 To display characters repetitively, add an "@" sign to the end of the string. For
example:

modify memory sysbuf string to "0123456789ABCDEF@"

4 To restart the program after an "@" sign is used, choose Execution→Run→from
Reset, or from the command line:

run from reset

Chapter 1: Getting Started
Step 17: Output characters on the seven-segment display

34

Step 18: Take a trace of emulation activity

• Choose Trace→Everything, and then choose Trace→Display. Choose
Settings→Display Modes ... In the Display Modes dialog box, select Source in
Trace Off, Then click OK. Now on the command line, enter the command:

display trace absolute status mnemonic

• Or, using the command line, enter the following commands:

trace
display trace absolute status mnemonic
set source off symbols off

A trace list similar to the following should appear on screen.

Trace List Offset=0
Label: Address Data Absolute Status
Base: hex hex mnemonic
after 000008F4 65F24A82 $65F24A82 phy sprog long read
+001 000008F8 6FEA7050 $6FEA7050 phy sprog long read
+002 000008FC B08263E4 $B08263E4 phy sprog long read
+003 000008E8 4A322800 $4A322800 phy sprog long read
+004 000008EC 67085282 $67085282 phy sprog long read
+005 000008F0 7050B480 $7050B480 phy sprog long read
+006 FFFFC010 00000000 $00------ phy sdata byte read
+007 000008F4 65F24A82 $65F24A82 phy sprog long read
+008 000008F0 7050B480 $7050B480 phy sprog long read
+009 000008F4 65F24A82 $65F24A82 phy sprog long read
+010 000008F8 6FEA7050 $6FEA7050 phy sprog long read
+011 000008FC B08263E4 $B08263E4 phy sprog long read
+012 00000900 2D7C0000 $2D7C0000 phy sprog long read
+013 00000904 092AFFF8 $092AFFF8 phy sprog long read
+014 000008E0 FF00588F $FF00588F phy sprog long read

Note that all of the addresses displayed are physical addresses (denoted by "phy" in
the "Absolute Status Mnemonic" column of the trace list).

When the analyzer receives physical addresses, it can only show hexadecimal
values in the "Address" column of the trace list. The analyzer has no way to cross
reference the physical addresses on the emulation bus with the logical addresses
from which they were translated. Therefore, the analyzer cannot show you any
symbol information associated with these addresses. To see logical addresses in the
tracelist, you must use the deMMUer.

Chapter 1: Getting Started
Step 18: Take a trace of emulation activity

35

Step 19: Prepare the deMMUer so you can see
symbolic addresses in the trace list

• Choose Settings→DeMMUer→, and then make sure the Verbose pushbutton is
pressed (to see details on screen). Choose Settings→DeMMUer→Load from
Memory.

• Or, using the command line, enter the following command:

load demmuer verbose

A display similar to the following should appear.

 All physical addresses within the following 32-Mbyte range(s) will be
 reverse translated into logical addresses for the analyzer:
 000000000..001ffffff@a
 0fe000000..0ffffffff@a

 The lowest logical address from the translation tables is assumed when
 multiple translations reference the same physical address.

The above command loaded the deMMUer with information to reverse translate
two ranges of physical addresses obtained from the MMU. By default, the
deMMUer was enabled when it was loaded. The verbose mode of this command
was selected so we could see which ranges of physical addresses would be reverse
translated by the deMMUer.

Any physical addresses that might have been derived from two or more logical
addresses will be reverse translated to the lowest logical address by the deMMUer.

Remember the setup of the MMU. It showed the following:
 Logical Address Physical Address Attributes
 000000000..000007fff 000000000..000007fff@a S W
 000008000..00000ffff 000008000..00000ffff@a W
 000010000..000017fff 0ffff0000..0ffff7fff@a W
 000018000..00001bfff 0ffff8000..0ffffbfff@a
 00001c000..00001ffff 0ffffc000..0ffffffff@a S
 0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

Physical address ffff0000H, for example, might appear when the MMU translates
either logical address 10000H or logical address ffff0000H. The deMMUer will
send 10000H to the analyzer because it is the lowest logical address that might have
caused physical address ffff0000H to appear on the emulation bus.

Chapter 1: Getting Started
Step 19: Prepare the deMMUer so you can see symbolic addresses in the trace list

36

When a physical address maps to two or more logical addresses, the deMMUer
normally sends the logical address with the lowest value to the analyzer.
Exceptions to this rule are discussed in Chapter 10, "Using Memory Management".

Step 20: Take a new trace

• The purpose of this trace is to see if the analyzer is now capturing logical address
information for each state on the emulation bus. Choose Trace→Everything, and
then choose Trace→Display. Choose Settings→Source/Symbol
Modes→Symbols.

• Or, using the command line, enter the following commands:

trace
display trace
set symbols on

after sys_sta+0000002C 6FEA7050 $6FEA7050 log sprog long read
+001 sys_sta+00000030 B08263E4 $B08263E4 log sprog long read
+002 sys_sta+00000034 2D7C0000 $2D7C0000 log sprog long read
+003 sys_sta+00000038 092AFFF8 $092AFFF8 log sprog long read
+004 sys_sta+00000014 FF00588F $FF00588F log sprog long read
+005 sys_sta+00000018 74006008 $74006008 log sprog long read
+006 sys_sta+0000001C 4A322800 $4A322800 log sprog long read
+007 sys_sta+00000024 7050B480 $7050B480 log sprog long read
+008 sys_sta+00000028 65F24A82 $65F24A82 log sprog long read
+009 sys_sta+0000002C 6FEA7050 $6FEA7050 log sprog long read
+010 sys_sta+00000030 B08263E4 $B08263E4 log sprog long read
+011 sys_sta+0000001C 4A322800 $4A322800 log sprog long read
+012 sys_sta+00000020 67085282 $67085282 log sprog long read
+013 sys_sta+00000024 7050B480 $7050B480 log sprog long read
+014 sdata|_sysbuf 00000000 $00------ log sdata byte read

Note that "log" is now shown in the "Absolute Status Mnemonic" column. Because
the deMMUer is supplying logical addresses to the analyzer, the analyzer is able to
replace the hexadecimal addresses with the symbols in the trace list (i.e.
sdata|_sysbuf).

Chapter 1: Getting Started
Step 20: Take a new trace

37

Step 21: Inverse assemble the trace list

• Now show the trace list inverse assembled into assembly language mnemonics.
Choose Settings→Display Modes ... In the Display Modes dialog box, select
Source Mixed in Source in Trace. Then click OK.

• Or, using the command line, enter the following commands:

display trace disassemble_from_line_number 0
set source on inverse_video on symbols on
set source memory_only_trace_on

after sys_sta+0000002C 6FEA7050 BLE.B spr|sys_startup+$0018
 =sys_sta+0000002E MOVEQ #$00000050,D0
+001 sys_sta+00000030 B08263E4 CMP.L D2,D0
 =sys_sta+00000032 BLS.B spr|sys_startup+$0018
 ##########demo.c - line 248 thru 250
##########################
 {
 /* invoke user task to display string */
 argv[0] = "demo";
+002 sys_sta+00000034 2D7C0000 MOVE.L #$0000092A,($FFF8,A6)
+003 sys_sta+00000038 092AFFF8 $092AFFF8 log sprog long read
+004 sys_sta+00000014 FF00588F Unimplemented F-Line Opcode: $FF0
 =sys_sta+00000016 ADDQ.L #4,A7
 ##########demo.c - line 234 thru 238
##########################

 for (;;)

The above display is the trace list format established at power up. When you enter
a trace command and use your command to change the trace format, your changes
become the new default for the Display→Trace command.

Note that symbols are shown in the trace list instead of the hexadecimal address
values they represent. You requested that symbols be shown in place of
hexadecimal address values when you included the "symbols on" option in the
commands above.

Chapter 1: Getting Started
Step 21: Inverse assemble the trace list

38

Step 22: Reset the emulator

• Sometimes you may want to reset the emulation processor. This may be done from
the emulator or the target system. To reset the emulation processor from the
emulator, choose Execution→Reset

• On the comand line, enter:

reset

The Status line will show "M68040--Emulation reset".

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to Chapter 8, "Configuring the Emulator", for more information.)

Chapter 1: Getting Started
Step 22: Reset the emulator

39

40

2

Solving Quick Start Problems

Solutions to problems you might face during the Getting Started procedures.

41

Solving Quick Start Problems

This chapter helps you identify and resolve problems that may arise while using
procedures in Chapter 1, "Getting Started".

For more information, refer to Chapter 9, "Solving Problems".

If the desired emulator interface won’t start

Check for correct installation of the interface software. Refer to Chapters 18, 19,
and 20 in the "Installation and Service" part of this manual, and to the HP 64700
Series Emulators Installation/Service Guide.

Verify that the $PATH environment variable includes the directory containing the
interface software (/usr/hp64000/bin). The interface files are loaded in the
"/usr/hp64000/bin" directory by the installation procedure.

If the text-based Softkey Interface won’t start
under X-Windows

If the Graphical User Interface is starting when you are trying to start the Softkey
Interface, include the -u skemul option to the emul700 command to override the
Graphical User Interface and force the start of the Softkey Interface.

Chapter 2: Solving Quick Start Problems
If the desired emulator interface won’t start

42

If you can’t load the demo program

Check to ensure that the emulator probe is plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program may
not work with target systems other than the demo board.)

Make sure the reset flying lead is connected from the probe to the demo board.

Check to ensure that you changed to the demo directory:

• /usr/hp64000/demo/debug_env/hp64783 for the MC68040.

Chapter 2: Solving Quick Start Problems
If you can’t load the demo program

43

If you can’t display the program

Verify that the program loaded correctly.

Check to see that the status of the emulator is reset or is running in monitor. See
the STATUS line on the display. If the emulator is halted, it can’t use the monitor
to display program memory. In this case, reset the emulator and try to display the
program memory again.

Check the event log by choosing Display→Event Log, or by using the display
event_log command on the command line. If the event log shows that the program
loaded, try reloading the program again.

If you are displaying memory with symbols on, ensure that the symbol data base
has been loaded with the program. If this is the cause of the problem, you will be
able to obtain the memory display by referring to the address using its hexadecimal
value instead of its symbolic value. For example, to obtain a display of the
program in memory at symbolic address demo:main:

Move the mouse pointer to the entry buffer and type in "main"; and then select
Display→Memory→Mnemonic ().

or use the command line to enter:

display memory main mnemonic

Chapter 2: Solving Quick Start Problems
If you can’t display the program

44

Part 2

Using The Emulator

45

Making Measurements

When you’ve become familiar with the basic emulation process, you’ll want to
make specific measurements to analyze your software and target system. The
emulator has many features that allow you to control program execution, view
processor resources, and program activity.

In This Part 2

Chapter 3, “Using the Emulator/Analyzer Interface,” tells you how to use the
Graphical User Interface and Softkey Interface commands.

Chapter 4, “Using the Emulator,” shows you how to use the emulator/analyzer
commands to control the emulation processor and make simple emulation
measurements.

Chapter 5, “Using the Emulation-Bus Analyzer,” explains how to use the
emulation-bus analyzer to record program execution for debugging.

Chapter 6, “Making Coordinated Measurements,” tells how to couple two or more
emulators to coordinate measurements involving more than one processor.

Chapter 7, "Making Software Performance Measurements," shows you how to use
the Software Performance Measurement Tool supplied with the emulator.

Chapter 8, “Configuring the Emulator,” explains how to use the emulator/analyzer
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 9, “Solving Problems,” describes some of the problems that you might
encounter when you use the emulator, and shows how to solve them.

This part of the manual explains how to accomplish various common tasks, often
requiring use of several emulator/analyzer commands together. It assumes you
know how to use the commands to control the emulator. If you need a general
introduction to using the emulator, refer to Part 1.

Part 2

46

3

Using the Emulator/Analyzer
Interface

How to enter commands in the Graphical User Interface and the Softkey Interface

47

Using the interface

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer (SPA) interface (which is also a separate
product) lets you make measurements that can help you improve the performance
of your software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

This chapter shows you how to perform the basic tasks associated with each type of
emulator/analyzer interface. The information is grouped into the following sections:

• Starting the emulator/analyzer interface.

• Opening other HP 64700 interface windows.

• Entering commands

• Using special features of the Graphical User Interface.

• Using display-control features of the Softkey Interface.

• Copying information to a file or printer.

• Exiting the emulator/analyzer interface.

• Creating and executing command files.

• Forwarding commands to other HP 64700 interfaces.

• Accessing the terminal interface.

• Accessing the operating system.

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides features such as pulldown and popup menus, point and click setting

Chapter 3: Using the Emulator/Analyzer Interface

48

of breakpoints, cut and paste, on-line help, customizable action keys, and popup
recall buffers.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface, the command line portion of the interface
gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, there are some commands that must be entered in the
command line.

Maximum Number of Windows

Ten is the maximum number of windows you can use to view HP 64700
emulator/analyzer operation. Only one C debugger interface window and one SPA
window are allowed, but you can start multiple emulator/analyzer interface
windows.

Activities that Occur in the Windows

When using an HP 64700-Series emulator in a window environment (or with
multiple terminals), the following activities occur in the windows where the
emulator is currently operating.

Commands Complete in Sequence

When you execute commands that access the emulator (in multiple windows) the
first command you specify will complete before the second command begins
executing.

Status Line is Updated

When you perform an emulation task in one window that updates the status line,
status lines are updated in all other windows where the emulator is operating. The
event log is also updated in each window.

Chapter 3: Using the Emulator/Analyzer Interface

49

Status Line Meaning

Slow clock No clock source from the emulated
system.

Emulation reset The processor is being reset from the
emulator.

Target reset The processor is being reset from the
emulated system.

Bus grant The processor has not been granted the
bus by the external arbiter (BG is not
asserted).

Halted The processor has double bus faulted.

No bus cycles No bus cycles are occurring.

Running user program The processor is executing a target
(user) program.

Running in monitor The processor is executing the
emulation monitor.

No target power No power from the emulated system.

Awaiting CMB ready The emulator is waiting for a CMB
READY signal. Refer to Chapter 6

CPU in wait state The processor is waiting for a cycle
termination from the target system.

Unknown state The emulator is in an unknown state.
You will probably need to reset the
emulation processor, initialize the
emulator, or cycle power to reinitialize
the emulator.

Chapter 3: Using the Emulator/Analyzer Interface

50

Ending the Emulation Session

When you are using the emulator in multiple windows, you can choose to either
end the emulation session in a single window, or in all the windows. The end
command by itself just ends the window where the command is executed.

Using Multiple Terminals

If you do not have a window environment installed on your host computer, you can
still obtain the benefits of multiple windows by logging onto the same UNIX
system from several terminals, and starting the emulator on each terminal, just as
described here for several windows.

The rest of this chapter describes how to start and stop interface instances and
sessions in multiple windows.

Chapter 3: Using the Emulator/Analyzer Interface

51

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in Chapter 19, "Installation and
Service".

This section describes how to:

• Display the availability of emulators defined in the 64700tab.net file.

• Start the interface.

• Start the interface using the default configuration.

• Execute a command file on interface startup.

• Unlock an interface that was left locked by another user.

To see emulator/analyzer availability before
interface startup

• Use the emul700 -lv or emul700 -lv <emul_name> command.

The -lv option of the emul700 command provides a verbose listing of all emulators
defined in the 64700tab and 64700tab.net files, and shows whether they are already
in use, locked, or available. If a logical emulator name (<emul_name>) is included
in the command, just the status of that emulator is listed. The verbose option also
lists all of the interfaces that can be started.

Examples To list, verbosely, the status of the emulator whose logical name is "em68040":

$ emul700 -lv em68040

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

52

The information may be similar to:
em68040 - m68040 available
 description: M68040 emulation, w/internal analysis, 260Kb emul mem
 user interfaces: xemul, xperf, skemul, skperf
 device channel: /dev/emcom23

Or, the information may be similar to:
em68040 - m68040 running; user = guest@myhost
 description: M68040 emulation w/internal analysis, 260Kb emul mem
 user interfaces: xemul, xperf, skemul, skperf
 internet address: 21.17.9.143

The "em68040" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/usr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a ’#’ character are ignored.
The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#
#--------+------------+-----------+---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#--------+------------+-----------+---
lan: em68040 m68040 21.17.9.143
serial: em68040 m68040 myhost /dev/emcom23 OFF 9600 NONE XON 2 8

To start the emulator/analyzer interface

• Use the emul700 [-u < user interface>]<emul_name> command.

If /usr/hp64000/bin is specified in your PATH environment variable, you can start
the interface with the emul700 <emul_name> command. The "emul_name" is the
logical emulator name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab.net).

If you are running the X Window System, the graphical user interface for the
emulator/analyzer will start by default. Otherwise, the softkey user interface will
start. You can force a particular interface to be used by including the "-u" option
and the name of the user interface desired.

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

53

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
data in a fourth, and results of software performance measurements in the fifth (if a
software performance analyzer is installed as part of your system).

Examples To start the emulator/analyzer interface for the MC68040 emulator, enter:

$ emul700 em68040

If you’re currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in Chapter 12, "Emulator Error
Messages".

To start the softkey user interface for the emulator/analyzer when the X Window
System is running, enter:

$ emul700 -u skemul em68040

To start the interface using the default
configuration

• Enter the emul700 -d <emul_name> command.

In the emul700 -d <emul_name> command, the -d option says to use the default
configuration. The -d option is ignored if the interface is already running in
another window or on another terminal.

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

54

To execute a command file at interface startup

• Enter the emul700 -c <cmd_file> <emul_name> command.

Starting a command file (-c <cmd_file>) at emulator startup allows you to
automate some of the setup and configuration of the emulator. For example, you
may have a command file that loads a particular configuration file, a program file,
and then sets up trace display formats and specifications.

If the HP64KPATH variable is set, the interface will use the search paths specified
in this variable to locate a command file passed to it with the emul700 command.

Refer to the "Creating and Using Command Files" section later in this chapter for
information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup" command file, enter:

$ emul700 -c startup em68040

where “m68040" is the logical name for the HP 64783 MC68040 emulator.

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

55

To unlock an interface that was left locked by
another user

• Use the emul700 -U <emul_name> command.

The -U option to the emul700 command may be used to unlock the emulators
whose logical names are specified. You can only use this command if there is no
current session in progress.

Examples To unlock the emulator whose logical name is "em68040", enter:

$ emul700 -U em68040

Chapter 3: Using the Emulator/Analyzer Interface
Starting the Emulator/Analyzer Interface

56

Opening Other HP 64700 Interface Windows

The File→Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows, if products for those windows have
been installed (for example, the software performance analyzer, SPA, interface and
the high-level debugger interface).

This section shows you how to:

• Open additional emulator/analyzer interface windows.

• Open the high-level debugger interface window.

• Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

• To open additional Graphical User Interface windows, choose
File→Emul700→Emulator/Analyzer under Graphic Windows

• To open additional Softkey Interface windows, choose
File→Emul700→Emulator/Analyzer under Terminal Windows.

• Enter the emul700 <emul_name> command in another terminal emulation
window.

You have a choice of opening up to nine additional windows, whether they be
Graphical User Interface windows, or terminal emulation windows containing the
Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

Chapter 3: Using the Emulator/Analyzer Interface
Opening Other HP 64700 Interface Windows

57

The File→Emul700 menu may display other choices if the interface finds other
HP 64700 products on the computer.

To open the high-level debugger interface window

• Choose File→Emul700→High-Level Debugger ... under Graphic Windows.

For information on how to use the high-level debugger interface, refer to the
debugger/emulator User’s Guide.

To open the software performance analyzer
(SPA) interface window

• Choose File→Emul700→Performance Analyzer ... under Graphic Windows.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’s Guide.

Chapter 3: Using the Emulator/Analyzer Interface
Opening Other HP 64700 Interface Windows

58

Entering Commands

The Graphical User Interface and Softkey Interface provide simple, effective
mechanisms for entering commands to be processed by the emulator and analyzer.
Basic descriptions of both interfaces are given in Chapter 1, "Getting Started".

This section shows you how to:

• Turn the command line on and off.

• Enter commands on the command line.

• Edit commands.

• Recall commands that were used before.

• Execute a completed command.

• Get online help on commands.

• Display the error log and the event log.

To turn the command line on or off in the
Graphical User Interface

• To turn the command line on or off using the pulldown menu, choose
Settings→Command Line.

• To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hold the select mouse button,
and choose Command Line On/Off from the menu.

• To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and hold the select mouse
button, and choose Command Line Off from the menu.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

59

• To turn the command line on, position the mouse pointer in the main display area
and start typing.

The above selections turn display of the command line area on or off. When it is
on, the command line is displayed; you can use the softkey pushbuttons, the
command return and recall pushbuttons, and the cursor pushbuttons for
command-line editing. When it is off, the command line is not displayed; you use
only the pulldown menus and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line; it will be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some command-line input that cannot be supplied any other way.

To enter commands on the command line

• In the Graphical User Interface, successively position the mouse pointer on
pushbuttons and click the pushbutton select mouse button until a complete
command is formed.

• Successively press keyboard function keys corresponding to softkey pushbuttons
until a complete command is formed.

• Type in the command you want to use. You must type in the full command name as
shown in Chapter 11, "Emulator Commands". This may be different from the
label on the corresponding softkey.

• Type in the first few characters of a command name, and press <Tab>. The
interface will complete the command name automatically. Repeat this process until
a complete command is formed.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

60

To edit the command line using the command
line pushbuttons on the Graphical User Interface

• To position the cursor at a specific character, place the mouse pointer on the
character and click the select mouse button.

• To clear the command line, click the Clear pushbutton.

• To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton

• To move to the right one command word or token, click the Forward pushbutton.

• To move to the left one command word or token, click the Backup pushbutton.

• To insert characters at the cursor position, press the insert key on your keyboard to
change to insertion mode, and then type the characters to be inserted.

• To replace characters at the cursor position, press the insert key on your keyboard
to change to replacement mode, and then type the replacement characters.

• To delete characters to the left of the cursor position, press the <BACKSPACE>
key on your keyboard.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

When moving by words to the left or right, the Forward pushbutton becomes gray
and provides no function when the cursor reaches the end of the command string.
The Backup pushbutton becomes gray and provides no function when the cursor
reaches the beginning of the command.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

61

To edit the command line using the command
line popup menu

• To position the cursor at a specific character, place the mouse pointer on the
character and click the select mouse button.

• To clear the command line, position the mouse pointer within the Command Line
entry area, press and hold the select mouse button until the Command Line popup
menu appears, and then choose Clear Entire Line from the menu.

• To clear the command line from the cursor position to the end of the line, place the
mouse pointer where you want the clear-to-end function to start. Press and hold the
select mouse button until the Command Line popup menu appears, and then choose
Clear to End of Line from the menu.

• To insert characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold the select mouse button to display the Command Line popup menu, and then
choose Position Cursor, Insert Mode from the menu. Type the characters to be
inserted.

• To replace characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold the select mouse button to display the Command Line popup menu, and then
choose Position Cursor, Replace Mode from the menu. Type the characters to be
inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

62

To edit the command line using the keyboard

• In the Graphical User Interface, place the mouse pointer either in the display area,
on the status line, or in the command line area. Then you can use the following
keys to select points in the command line: <Left arrow>, <Right arrow>, <Tab>,
<Shift><Tab>, <Insert char>, <Back space>, <Delete char>, <Clear line>, and
<CTRL>u.

• Move to the next word on the command line by pressing the <Tab> key. Move to
the previous word on the command line by pressing the <Shift><Tab> key
combination.

• Enter more than one command on a command line by separating the commands
with semicolons (;).

• Recall previous commands by pressing <Ctrl>r to cycle backward, or <Ctrl>b to
cycle forward through the command line buffer.

• Delete the current command line by pressing <Ctrl>u .

• Clear the command line from the cursor position to the end of the line by pressing
<Ctrl>e.

To recall commands

1 In the Graphical User Interface, click the pushbutton labeled Recall in the
Command Line area to display the dialog box.

2 Choose a command from the dialog box. (You can also enter a command directly
into the Selection area of the dialog box.)

Because all command entry methods in the interface (pulldown menus, action keys,
and command line entries) are echoed to the command line entry area, the contents

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

63

of the Command Recall dialog box is not restricted to just commands entered
directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting
X Resources").

See "To use dialog boxes" in this chapter for information about using dialog boxes.

To execute a completed command

• In the Graphical User Interface, click the pushbutton labeled Return (near the
bottom of the command line area).

• In the Graphical User Interface, position the mouse pointer in the command line
entry area; press and hold the select mouse button until the Command Line popup
menu appears; and then choose the Execute Command menu item.

• Press the carriage return key on the keyboard.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

64

To get online help on commands

• To get a dialog box that lists an index of helpful information in the Graphical User
Interface, select Help→General Topic... or Help→Command Line.... Then
choose a topic of interest from the Help Index.

• To get specific help about the operation of the command line on the Graphical User
Interface, click the Help pushbutton located near the bottom, right-hand corner of
the Command Line area.

• Get specific help about a command to be entered on the command line, type:

help <command_name>

The <command_name> parameter can be entered from the softkeys after you type
help.

You can type a question mark (?) in place of the keyword help. When you use the
help command, information about the command you selected (including syntax and
sample usage) scrolls onto the screen.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

65

To display the error log

• Choose Display→Error Log.

• Position the mouse pointer on the status line, press and hold the select mouse
button, and then choose Display Error Log from the popup menu.

• Using the command line, enter display error_log.

The last 100 error messages that have occurred during the emulation session are
displayed.

To display the event log

• Choose Display→Event Log.

• Position the mouse pointer on the status line, press and hold the select mouse
button, and then choose Display Event Log from the popup menu.

• Using the command line, enter display event_log.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, breakpoints and trace
commands).

Chapter 3: Using the Emulator/Analyzer Interface
Entering Commands

66

Using Special Features of the Graphical User
Interface

The following paragraphs show you how to use pulldown and popup menus, the
entry buffer, action keys, and dialog boxes to compose commands and control
emulator and analyzer operation. These features are only available in the Graphical
User Interface.

This section shows you how to:

• Choose a pulldown menu item.

• Choose a popup menu item.

• Place values into the entry buffer.

• Copy and paste from the entry buffer to the command line.

• Use action keys.

• Use dialog boxes.

To choose a pulldown menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.

2 Press and hold the command select mouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu pushbutton), then continue to hold the mouse button
down and move the mouse pointer toward the arrow on the right edge of the menu.
The cascade menu will display. Repeat this step for the cascade menu until you
find the desired menu item.

3 Release the mouse button to select the menu choice.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

67

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

To choose a pulldown menu item using the
mouse (method 2)

1 Position the mouse pointer over the menu name on the menu bar.

2 Click the command select mouse button to display the menu.

3 Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu pushbutton), then
repeat the previous step and then this step until you find the desired item.

4 Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

68

To choose a pulldown menu item using the
keyboard

• To initially display a pulldown menu, press and hold the menu select key (for
example, the "Extend char" key on an HP 9000 keyboard), and then type the
underlined character in the menu label on the menu bar. (For example, "f" for
"File". Type the character in lower case only.)

• To move right to another pulldown menu after having initially displayed a menu,
press the right-arrow key.

• To move left to another pulldown menu after having initially displayed a menu,
press the left-arrow key.

• To move down one menu item within a menu, press the down-arrow key.

• To move up one menu item within a menu, press the up-arrow key.

• To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then press the carriage return
key on the keyboard.

• To cancel a displayed menu, press the Escape key.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item
has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interface keyboard focus policy is set to

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

69

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to Chapter 13,
"Setting X Resources", and the "Softkey.Input" scheme file for more information
about setting the X resources that control defining keyboard accelerators.

To choose popup menu items

1 Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

2 Press and hold the select mouse button.

3 After the popup menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

4 Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:

• Mnemonic Memory Display.

• Breakpoints Display.

• Global Symbols Display.

• Local Symbols Display.

• Status Line.

• Command Line.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

70

To place values into the entry buffer using the
keyboard

1 Position the mouse pointer within the text entry area. (An "I-beam" cursor will
appear.)

2 Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the <CTRL>u
key combination.

To copy-and-paste to the entry buffer

• To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and click the paste mouse button.

• To specify the exact text to copy to the entry buffer: press and hold the paste mouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
paste mouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

71

contains only numbers 0 through 9 and characters "a" through "f") automatically
has an "h" appended.

Note If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are several displays of the entry buffer, there is only
one entry buffer; it is common to all windows. That means you can copy and paste
a symbol or an address seen in one window and then use it in another window.

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

72

Example To paste the symbol (plus offset) "demodis+00000004" into the entry buffer from
the interface display area, position the mouse pointer over the symbol and then
click the paste mouse button.

A mouse click
causes the interface
to expand the
highlight to include
the symbol
mmutest+0000000C
and paste the symbol
into the entry buffer.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

73

To recall entry buffer values

• Position the mouse pointer over the Recall pushbutton just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface ’locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources").

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

1 Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer", or "To
recall entry buffer values" task descriptions).

2 Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

74

To copy-and-paste from the entry buffer to the
command line entry area

1 Place text to be pasted into the command line in the entry buffer text area.

You may do that by:

• Copying the text from the display area using the copy-and-paste feature.

• Enter the text directly by typing it into the entry buffer text area.

• Choose the text from the entry buffer recall dialog box.

2 Position the mouse pointer within the command line text entry area.

3 If necessary, reposition the cursor to the location where you want to paste the text.

4 If necessary, choose the insert or replace mode for the command entry area (by
pressing the <insert> key on the keyboard).

5 Click the command paste mouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

75

To use the action keys

1 If the action key uses the contents of the entry buffer, place the required
information in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
Some of these perform tasks and others show you how to define and use action
keys. You’ll really appreciate action keys when you define and use your own.

Action keys are defined by setting an X resource. Refer to Chapter 13, "Setting X
Resources", for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area of the
dialog box.

2 Edit the item in the text entry area (if desired).

3 Finally:

• Click on the "OK" pushbutton to make the selection and close the dialog box.
• Click on the "Apply" pushbutton to make the selection and leave the dialog

box open.
• Click on the "Cancel" pushbutton to cancel the selection and close the dialog

box.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

76

The Graphical User Interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

Settings Display
Modes

You can set the display mode and customize the display
presentation for memory and trace list displays.

Modify Register You can view and modify values of any selected register,
as well as recalling previous values of the registers.

Symbol Selection Selects the current working symbol (cws). You can change
to a previously accessed cws, a predefined cws, or specify a
new cws.

The dialog boxes share some common properties:

• Most dialog boxes can be left on the screen between uses.
• Dialog boxes can be moved around the screen and do not have to be positioned

over the Graphical User Interface window.
• If you iconify the interface window, all dialog boxes are iconified along with

the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to Chapter 13,
"Setting X Resources").

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

77

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of
filter-matching files
from the current
directory.

A list of files
previously accessed
during the emulation
session.

A single click on a
file name from either
list highlights the file
name and copies it to
the text area. A
double click chooses
the file and closes the
dialog box.

Label informs you
what kind of file
selection you are
performing.

Text entry area. Text
is either copied here
from the recall list, or
entered directly.

Clicking this
pushbutton chooses
the file name
displayed in the text
entry area and closes
the dialog box.

Entering a new file
filter and clicking this
pushbutton causes a list
of files matching the
new filter to be read
from the directory.

Clicking this pushbutton
cancels the file selection
operation and closes the
dialog box.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

78

To use the Directory Selection dialog box:

Label informs you of
the type of list
displayed.

A list of predefined
or previously
accessed directories.

A single click on a
directory name from
the list highlights the
name and copies it to
the text entry area. A
double click chooses
the directory and
closes the dialog box.

Text entry area.
Directory name
is either copied here
from the recall list, or
entered directly.

Clicking this
pushbutton chooses
the directory
displayed in the text
entry area and closes
the dialog box.

Clicking this
pushbutton chooses the
directory displayed in
the text entry area, but
keeps the dialog box on
the screen instead of
closing it.

Clicking this
pushbutton cancels the
directory selection
operation and closes
the dialog box.

Chapter 3: Using the Emulator/Analyzer Interface
Using Special Features of the Graphical User Interface

79

Using display-control features of the Softkey
Interface

• Use the following control-key combinations to redraw, reposition, and update the
display of the Softkey Interface:

Input Result

<Ctrl>l To redraw the current display

<Ctrl>f To roll the display left

<Ctrl>g To roll the display right

<Ctrl>s To stop screen updates

<Ctrl>q To resume screen updates

You can roll the display left and right only if there is more information than will fit
into 80 columns.

Chapter 3: Using the Emulator/Analyzer Interface
Using display-control features of the Softkey Interface

80

Copying information to a file or printer

• Choose File→Copy. Select the type of information from the cascade menu (see
copy options below), and use the dialog box to select the file or printer.

• Using the command line, enter a command such as:

copy <copy option> to <destination>

In the above command, <copy option> has a name similar to those listed below
(available through softkey selection), and <destination> is a printer or the name of a
file.

ASCII characters are copied to the file or printer. If you copy information to an
existing file, it will be appended to the file. Details of the copy options are
discussed in the following paragraphs.

Display ... Copies information currently in the display area. This option is useful
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with the Settings→Source/Symbols Modes or
Settings→Display Modes pulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use the File→Copy→Display ... command.

Chapter 3: Using the Emulator/Analyzer Interface
Copying information to a file or printer

81

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been loaded,
this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named (by
an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from the event log display.

See the copy command syntax in Chapter 11, "Emulator Commands", for more
information.

Chapter 3: Using the Emulator/Analyzer Interface
Copying information to a file or printer

82

Exiting the Emulator/Analyzer Interface

The following paragraphs show you how to end single instances of the interface in
selected windows, and how to exit from the interface and end your session.

This section shows you how to:

• End a single window in the interface.

• End the emulation session in all windows.

To end a single window in the interface

• In the interface window you wish to close, select File→Exit→Window.

• If using the command line, in the interface window you wish to close, enter:

end

This ends the interface instance in the window where the command is executed.
None of the other windows are affected.

If the window is the only window into the emulation session, the above command
ends the emulation session and leaves the emulator in a locked state. Emulators
restarted from a locked state will reload the last valid configuration and absolute
file.

Chapter 3: Using the Emulator/Analyzer Interface
Exiting the Emulator/Analyzer Interface

83

To end the emulation session in all windows

• To exit all windows, save your configuration to a temporary file, and lock the
emulator so it cannot be accessed by others, select File→Exit→Locked.

If using the command line, enter:

end locked

• To exit all windows and release the emulator for use by others, select
File→Exit→Released.

If using the command line, enter:

end release_system

If you exit locked, the interface saves the current configuration to a temporary file
and locks the emulator to prevent other users from accessing it. When you again
start the interface with the emul700 command, the temporary file is reloaded, and
you return to the configuration you were using when you quit.

Also, when you end locked, the contents of the entry buffer and command recall
buffer are saved. These recall buffer values will be present when you restart the
interface.

In contrast, if you end released, all changes you made to your configuration are lost.
You may want to save your current configuration to a configuration file before you
end released.

Chapter 3: Using the Emulator/Analyzer Interface
Exiting the Emulator/Analyzer Interface

84

Creating and Executing Command Files

A command file is an ASCII file containing command-line commands. The
interface can read a command file and execute the commands found there as if the
commands were entered one-by-one on the command line. Command files can, in
turn, call other command files. The interface will execute the called file like a
subroutine of the calling file.

You can create command files from within the interface by logging commands to a
command file as you execute commands. You can also create a command file
outside the interface with an ASCII text editor. Logging commands from the
command line has the advantage of making sure the commands are syntactically
correct when they reach the command file. Syntactically incorrect commands found
by the interface will cause it to halt execution of a command file.

With a single command file, you can automate a complete test procedure. For
example, you could start the interface and then execute a command file that would
perform the following steps:

1 Load a configuration file.
2 Load an absolute file.
3 Modify registers or memory locations.
4 Set up a trace specification.
5 Start the program running.
6 Capture a trace.
7 Save the trace listing to a file.

Command files are also useful for saving very complex trace specifications so that
they can be used again during another emulation session, or by other people.

Passing Parameters to Command Files

Command files can accept parameters. Parameters are like variables in the
command file and are usually used in place of explicit arguments to interface
commands. A command file that accepts parameters can be made more general than
a command file containing explicit argument values and can apply to a wider range
of uses.

Parameters can be passed in either of two ways. You can pass the parameters on the
command line when you execute the command file, or you can execute the
command file without the parameters and let the interface prompt you for the
parameters.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

85

Parameters must be declared at the beginning of a command file using the PARMS
keyword. Parameters are preceded by an ampersand (&) and consist of a
combination of one or more letters or underscores. Letters may be upper-case or
lower-case.

Using &ArG_lEfT in Command Files

A command file may contain a special argument named &ArG_lEfT . This special
argument does not have to be declared using the PARMS keyword. It can be used
in command files containing other parameters, or in command files that do not
contain any parameters. This special argument can accept the union of zero or more
command line arguments as a single argument. See “To increase flexibility of
command files by using &ArG_lEfT” for more information.

Using UNIX Commands and Scripts with Command Files

Command files may include UNIX commands and may call shell scripts. Some
commands are recognized directly by the interface (pwd, for example) while others
require a preceding exclamation point (!) to identify them as shell commands.

Using Shell Variables with Command Files

Command files may contain shell variables. Command files only support shell
variables beginning with “$”, followed by an identifier. An identifier is composed
of an underscore or a letter followed by zero or more letters, digits, or underscores.
Identifiers may follow the “$” symbol directly, or follow the “$” enclosed in braces
“{}”. An identifier must be enclosed in braces if any letter, digit, or underscore that
is not part of the identifier immediately follows the identifier. Otherwise, the
following text will be interpreted as part of the identifier. You can examine any
shell variables defined for your environment by using the UNIX env command.
Positional shell variables, such as $1, $2, and so on, are not supported. Neither are
special shell variables, such as $@, $*, and so on.

To illustrate how shell variables work, consider the shell variable “S”, defined to be
the string “soft”. Suppose you wanted to use the shell variable to reference the
directory “/users/softkey”. The reference “/users/${S}key” would produce the
desired directory name. However, the reference “/users/$Skey” would cause the
shell variable “Skey” to be searched for.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

86

Restrictions on Commands

There are certain commands that you cannot execute from a command file. These
are commands that require a response from you. For example, you cannot place
modify configuration commands in a command file because the command file
cannot “respond” to configuration questions.

Another restriction has to do with calling a command file from an executing
command file when the called command file requires parameters. You must supply
the parameters with the call to the command file, or the calling command file will
abort. That is because the calling command file cannot respond to the called file’s
parameter prompts.

Status Line Updates

The emulator status line is not always immediately updated with new status
information when the interface executes commands from a command file. You may
have to explicitly display the emulator status after a command file has executed by
issuing a display status command.

Nesting Command Files

You can call other command files from an executing command file. Called files
can, in turn, call other command files. This nesting of calls can continue to a
maximum of eight levels. Command files called from an executing command file
are executed like subroutines of the calling file. Control returns to the calling file
after the called file has executed.

Pausing Command Files

You can use the wait command in command files. This allows you to pause
execution of the command file between commands.

A variation of the wait command, the wait measurement_complete command,
should be used after starting a trace. Use this command so that a copy or display
command following a trace command will not execute until states from the new
trace are available for copy or display.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

87

Placing Comments in Command Files

As with any source file, comments in command files can help to explain the
operation of the command file, and record creation and modification information.
You can place comments in a command file either by using a text editor or by
entering the comment as a “command” in the interface command line while logging
commands. A special character, the pound sign (#), causes the interface to ignore
comments in command files, and also allows you to log comments to a command
file from the command line. A comment may appear on a line by itself, or it may
follow a command on a line. Commands cannot appear on a line after the comment
character because they will be interpreted as part of the comment.

Continuing Command File Lines

You can continue command file lines across several physical text file lines. This is
done by using a continuation character.

The continuation character is the backslash (\) character. Placing a backslash at the
end of the line just before the line feed causes the following line to be concatenated
with the current line. Multiple lines can be concatenated by ending all but the last
line with a backslash. The concatenated lines will be treated as a single command
line. Note that if you end the last line of a command file with a backslash, the
command will appear in the interface command line, but will not be executed.

Specifying a Search of Several Command File Directories

HP64KPATH is a special shell variable you can set to specify alternative search
paths for command files. HP64KPATH works much like the UNIX PATH in that
you can specify several directories, separated by colons (:), to be searched.

The remainder of this section lists the tasks associated with creating and using
command files.

To create a command file by logging commands

1 Select File→Log→Record... and use the dialog box to select a command file
name. If using the command line, enter the command:

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

88

log_commands to <filename>

2 Enter and execute commands to complete the desired task.

3 Stop logging commands by selecting File→Log→Stop. If using the command line,
enter the command:

log_commands off

The above commands provide a mechanism that logs commands, entered and
executed at the command line, to a file. Later, the command file can be executed by
the interface. The log_commands command does not appear on the softkeys. Type
it on the command line, or type the first few letters of the command and then press
<TAB>.

All commands entered on the command line after you type log_commands to
<filename> are logged to the <filename> until either the log_commands off
command is used or the interface is exited.

<filename> is any valid UNIX file name. File names may include path
information. If <filename> already exists, commands are appended to the current
contents of the file, unless the noappend option is used. If <filename> does not
exist, a new file is created.

File creation errors can sometimes be caused by write permission violations of
either files or directories. If you are having trouble creating a command file, make
sure you have the correct permissions.

Example To save a set of commands in the file STARTEMUL by logging commands while
executing them during an emulation session, enter the following commands in the
command line:

log_commands to STARTEMUL
You can add a comment to a file while logging if you
precede the comment with a pound sign.
The Softkey Interface will
ignore the rest of the line up to the line feed.
load configuration bigproject/config
load bigproject/program
trace after START
run from 2000h # Comments can follow on the same line

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

89

wait measurement_complete
The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace
log_commands off

To create a command file by using a text editor

• Use a text editor to create the command file.

A command file is a text file containing commands in the form that appear on the
command line. You can create command files with an ASCII text editor, such as vi.

Make sure that the commands you create in your command file are syntactically
correct. Syntactically incorrect command lines will halt command file execution.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

90

To execute (or playback) a command file

• To execute a command file at interface startup, use the -c <command file name>
option with your emul700 command.

• To execute a command file from within the Graphical User Interface, select
File→Log→Playback and use the dialog box to select the name of the command
file you wish to execute.

• To execute a command file using the command line, enter the name of the
command file and press the carriage return key.

Any name entered on the command line that is not recognized as a member of the
emulator/analyzer command set will be treated as the name of a command file.
Command file names may be preceded by directory paths.

If the command file name does not have a directory path prefixed to it, the interface
will search for it as follows:

• If the environment variable HP64KPATH is set, the interface will first search
in all directories listed in the HP64KPATH variable. If the interface does not
find the command file in those directories, it then searches the current working
directory for the command file.

• If the environment variable HP64KPATH is not set, the interface searches
only in the current working directory for the command file.

If the command file name has a path name prefixed to it, the interface will only
look in the specified path for the command file.

To interrupt execution of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, <CTRL>c will terminate the
"wait" command, but will not terminate command file execution; in this case, you
must press <CTRL>c again.

See “To specify the order of searching several command file directories
(HP64KPATH)” for more information about the HP64KPATH variable.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

91

Examples Suppose you have a command file named STARTEMUL, it is located in your
current working directory, and it contains the following commands:

log_commands to STARTEMUL
load configuration bigproject/config
load bigproject/program
trace after START
run from 2000h
wait measurement_complete
The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace
log_commands off

If you start the emulation session and enter STARTEMUL (the command file
name) in the command line, all commands from load configuration... to display
trace will be sequentially executed on the command line.

To nest command files

• Call a command file from an executing command file by including the command
file name in the executing command file.

The emulation/analyzer interface executes commands found in a command file just
as if they were entered into the command line. That means if the interface
encounters a command that is not part of its own command set, it will attempt to
execute it as a command file. (See “To execute a command file” in this section for
an explanation of command file execution.)

Command files called from other command files may be nested to a maximum of
eight levels. Control returns to the calling command file after the called command
file is executed. A called command file is like a subroutine of the calling command
file.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

92

Command files requiring parameters must have those parameters supplied by the
calling command file as part of the call. Failure to supply the parameters causes an
error and a halt of the calling command file.

Example The first command file (named “cmdfile1”) calls the second (named “cmdfile2”)
and then executes a single instruction after control returns.

cmdfile1:

cmdfile2
display memory

cmdfile2:

load configuration democfg
load demo

To pause command file execution

• To pause execution of a command file until the SIGINT (<CTRL>c) signal is
received, use the wait command.

• To pause execution of a command file for a specific amount of time, use the wait
<time> command, where <time> is in seconds.

• To pause execution of a command file until a trace trigger has been found and the
trace buffer is filled, use the wait measurement_complete command.

You may want to add a delay to a command file under certain conditions. For
example, you may want to execute a command file up to a certain point, have it
display a screen, and then pause while you examine the output on the screen.

Place wait measurement_complete in your command file following a trace
command to ensure that the trace completes before command file execution
continues. This ensures that subsequent trace display or trace copy commands use
the new trace states, not states from a previous trace.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

93

A wait command without parameters will cause execution to pause until the
<CTRL>c key combination is entered. If you have a command file that is hanging
on a wait command, check to make sure that the wait has a <time> or a
measurement_complete argument.

Examples Pause a command file for 5 seconds by placing the following command in the
command file:

wait 5

Pause a command file until a trace trigger has been satified and the trace buffer has
filled by placing the following command after a trace command in a command file:

wait measurement_complete

To add a comment to a command file

• Use a pound sign (#) to precede the comment string.

You can use this technique either while logging commands to a file during an
emulation session, or when you are creating a command file with a text editor. Any
text that follows the comment character, up to the next new line, is ignored by the
interface. Comments may appear on lines by themselves, or comments may follow
commands on the same line.

Example Two variations of comments are shown in the following command file fragment:

The next command is the default trace command
trace
wait measurement_complete # make sure the trace buffer
has new states
display trace

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

94

To pass parameters to a command file

1 Define formal parameters on the first line of the command file following the
PARMS keyword.

2 Pass actual parameters to the command file when it is executed.

A formal parameter is composed of an ampersand (&) followed by one or more
letters or underscores. Formal parameters are like variables in the command file.
Formal parameters are replaced by actual parameters when the command file is
executed.

An actual parameter is an ASCII string that represents a symbol or value. Actual
parameters containing blanks must be enclosed in single or double quotes.

Actual parameters are supplied to the command file in two ways.

• As arguments to the command file entered on the command line along with the
command file name. Values are positional. Enter a value for the first parameter
that follows the PARMS keyword in the command file immediately following
the command file name on the command line. Enter a value for the second
parameter second after the command file name. And so on.

• In response to prompts from the interface. If a formal parameter exists in the
command file and no actual parameter was passed to it on the command line,
the interface will prompt you for a value for the formal parameter. If you enter
a command file name without supplying any actual parameters, the interface
will prompt you for values for all the formal parameters.

You may use either method to supply parameters, or a combination of the two.
Being prompted for the parameters relieves you from having to remember the
parameters.

If, from another command file, you call a command file that requires parameters,
you must supply all the parameters with the call. The calling command file cannot
respond to parameter prompts; an error will occur and the calling command file will
halt.

Examples The following command file, called “loadany,” is a general command file for
loading a configuration file and then an executable file.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

95

PARMS &cfgname &binfile
load configuration &cfgname
load &binfile

The following command, entered on the command line, calls the command file
“loadany” and passes the actual parameters needed by the command file:

loadany democfg demo

You could start the command file “loadany” without parameters and allow the
interface to prompt you for the actual parameters. Issue the command:

loadany

and then respond to the parameter prompts. A prompt for the “cfgname” parameter
for this command file will look like the following:

STATUS: M68040--Running in monitor------------....
Define command file parameter [&cfgname]

You might also start the command file, supply just the first parameter, and have the
interface prompt you for the second parameter. Issue the command:

loadany democfg

to cause the interface to prompt you for the second parameter (&binfile).

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

96

To increase flexibility of command files by using
&ArG_lEfT

1 Use the special parameter &ArG_lEfT anywhere in the command file.

2 Pass zero or more arguments to the command file on the command line.

You can create highly flexible command files using the special parameter
&ArG_lEfT . It must be entered with the preceding ampersand (&) and exactly in
the combination of upper and lower case letters shown here. It is not a parameter in
the sense of command file formal and actual parameters. (See “To pass parameters
to a command file” for more information.) Instead, it is a special parameter that
may be included in either a command file with formal parameters or in a command
file without formal parameters.

When the interface finds &ArG_lEfT in a command file, it replaces it with the
union of all arguments remaining in the string of arguments passed to the command
file. Arguments for this special parameter must be passed on the command line and
can be zero or more in number. The interface will not prompt for a value for
&ArG_lEfT . If you do not pass any values, the interface removes the special
parameter and executes the command associated with the special parameter without
any arguments.

Example The following three commands are all variations of the display memory command:

display memory
display memory 1000h
display memory 1000h, 2000h thru +20h, 3000h

The first command displays memory in the format specified by the last memory
display command. The second command displays memory at address 1000h in
blocked word format. The third command displays memory at two specific memory
locations and also from a range of locations all in a single blocked word display.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

97

The following command file (consisting of one line), called “dm,” can be used to
implement all three commands:

display memory &ArG_lEfT

The following three command-file invocations replicate the three separate
commands:

dm
dm 1000h
dm 1000h, 2000h thru +20h, 3000h

To specify the order of searching several
command file directories (HP64KPATH)

• Set the environment variable HP64KPATH to one or more alternative directory
paths. Separate each path from the others with a colon (:).

You can set the environment variable HP64KPATH to specify alternative
directories for command files. If this variable is set, the interface searches each path
listed in the variable successively until the command file it is searching for is found
or no more paths exist. If the command file has not been found after this search,
then the interface looks in the current working directory for the command file. If
this variable is not set, the interface only searches the current working directory.

This variable is typically set to point to a common directory of command files that
might be used by several people. You could also use this variable so that you would
not have to store command files in the same working directory as, say, source files
for a project.

The directories listed in the HP64KPATH variable are not searched if the command
file has an explicit path name prefixed to it.

Use set to specify or change this variable if you are using the command line. Use
export to set this variable from your HP-UX .profile file.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

98

Examples Set this variable, from within the interface, to cause the interface to search first the
“/users/common/cmdfiles” directory, then the “/users/myid/cmdfiles” directory, and
then the current working directory, by issuing either of the two following set
commands:

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles

or

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles:.

Force the current working directory to be the first directory searched instead of the
last directory searched by including the dot symbol as the first directory in the
HP64KPATH, as in

set HP64KPATH=.:/users/cmdfiles:/users/myid/cmdfiles

By making the current directory the first in the path, you speed up command file
access for command files in the current working directory because the interface
would otherwise search the current working directory only after searching all of the
other directories listed in HP64KPATH.

Chapter 3: Using the Emulator/Analyzer Interface
Creating and Executing Command Files

99

Forwarding Commands to Other HP 64700
Interfaces

To allow the emulator/analyzer interface to run concurrently with other HP 64700
interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one interface
to another. All interfaces having software versions above 5.00 may forward
commands; only Graphical User Interfaces can receive forwarded commands.
Commands are forwarded using the forward command available in the command
line. The general syntax is:

forward <interface_name> "<command_string>"

This section shows you how to:

• Forward commands to the high-level debugger.

• Forward commands to the software performance analyzer.

To forward commands to the high-level debugger

• Enter the forward debug "<command_string>" command using the command
line.

Examples To send the Program Run" command to the debugger:

forward debug "Program Run"

Or, since only the capitalized key is required:

forward debug "P R"

Chapter 3: Using the Emulator/Analyzer Interface
Forwarding Commands to Other HP 64700 Interfaces

100

To forward commands to the software
performance analyzer

Enter the forward perf "<command_string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer:

forward perf "profile"

Chapter 3: Using the Emulator/Analyzer Interface
Forwarding Commands to Other HP 64700 Interfaces

101

Accessing the Terminal Interface

The Terminal Interface is the name given to a primitive command set that resides in
the emulator firmware. The Terminal Interface is described in the
MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s Guide. You
may sometimes need to use Terminal Interface commands during an emulation
session. For example, you must use a Terminal Interface command to run the
emulator’s internal performance verification (pv) test.

You can access the Terminal Interface of the emulator directly through pod
commands in your high-level interface (Graphical User Interface or Softkey
Interface). The high-level interface provides a screen to display Terminal Interface
output and two ways to use the keyboard to input Terminal Interface commands.

Terminal Interface commands bypass the high-level interface and are executed
directly by the emulator firmware. For that reason, the high-level interface can
become out-of-sync with the emulator if you use certain Terminal Interface
commands. Changing configuration items, for example, will cause the actual state
of the emulator to be different from the internal record of the state of the emulator
that is kept by the high-level interface. Changing communications parameters can
prevent the high-level interface from communicating further with the emulator, and
cause abnormal termination of the interface. Be careful when using Terminal
Interface commands to avoid creating problems for the high-level interface. The
following table lists some Terminal Interface commands to avoid, and why:

Commands Reasons to Avoid

stty, po, xp Do not use. Will change the channel operation and
hang emulator.

echo, mac Usage may confuse the channel protocol.

wait Do not use, will block access to emulator.

init, pv * Will reset emulator and force end release_system.

t Do not use. Will confuse trace status polling and
unload.

*Performance verification (pv) is an internal self-test of the emulator hardware. If
you suspect any problems with your emulation system hardware, use the Terminal
Interface command “pv” to run the internal self-test. pv is on this list of pod
commands to avoid because running it will reset the emulator and end the
emulation session. That does not mean you should not run pv if you suspect

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

102

hardware trouble. Just be aware that it will terminate the emulation session if you
do run it.

See the MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s
Guide for more information about the Terminal Interface.

The remainder of this section explains how to display the Terminal Interface
screen, copy the Terminal Interface screen to a file, and enter Terminal Interface
commands.

To display the Terminal Interface screen

• Select Display→Pod Commands. If you are using the command line, enter:

display pod_command

The interface will accept Terminal Interface commands, but will not show the
results (output) of those commands unless the Terminal Interface (pod command)
screen is displayed. Generally, you display this screen before entering one or more
pod commands.

To copy the Terminal Interface screen contents
to a file

• To append the contents of the Terminal Interface screen to the contents of a file,
select File→Copy→Pod Commands ..., or if using the command line, enter:

copy pod_cmd to <filename>

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

103

• To replace the contents of a file with the contents of the Terminal Interface screen,
on the command line enter:

copy pod_command to <filename> noappend

You can save the current contents of the Terminal Interface screen to a file by using
the copy command. Additionally, you can copy the Terminal Interface screen to a
printer or to a UNIX command by using other copy command options. Refer to
Chapter 11, "Emulator Commands", for more information about copy command
options.

<filename> is any valid UNIX file name. The file name may include path
information. If the file does not exist, the interface creates it. File creation errors
can sometimes be caused by UNIX permission violations on files or subdirectories.
Make sure you have write permission on the file and on the directory where you
intend to create the file.

To enter Terminal Interface commands

1 To execute just one or two Terminal Interface commands, enter the Terminal
Interface command, enclosed in double quotes, as an argument to pod_command
on the command line.

or

2 If you expect to enter several Terminal Interface commands, enable Terminal
Interface command pass-through and disable high-level interface command
processing by selecting Settings→Pod Command→Keyboard, or on the
command line, enter pod_command keyboard.

3 Enter the desired Terminal Interface commands.

4 End Terminal Interface command pass-through and re-enable high-level interface
command processing by pressing the suspend softkey.

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

104

Before you enter a Terminal Interface command, you should use the display
pod_command command to display the Terminal Interface screen. If you do not
display the Terminal Interface screen, you cannot see the output from the Terminal
Interface commands you enter.

If you are entering a single Terminal Interface command, the pod_command
“<command>” variation is useful. However, entering a series of pod commands is
easier if done from the keyboard. While keyboard entry is in effect, the interface
passes all keyboard input through to the Terminal Interface. The Terminal Interface
validates and executes all commands directly and displays the results on the
Terminal Interface screen.

Examples Access the Terminal Interface and display memory locations 0 through 20 in long
word format:

display pod_command
pod_command “m -dl 0..20”

Access the Terminal Interface from the command line, check the emulator status,
then the trace configuration, and finally return keyboard control to the command
line:

display pod_command
pod_command keyboard
es
tcf
suspend

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

105

To get help on Terminal Interface commands

1 Select Display→Pod Commands. If you are using the command line, enter:

display pod_command

2 On the command line, enter:

pod_command “help <cmd_name>”

<cmd_name> is the Terminal Interface command on which you want to receive
help.

You can access the emulator’s low-level Terminal Interface using the
pod_command keyword. If you need help on any Terminal Interface command,
you can use its help command.

See the MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s
Guide for more information regarding the Terminal Interface.

Examples Get help on the Terminal Interface cf command:

display pod_command

pod_command “help cf”

Get help on all Terminal Interface command groups:

display pod_command

pod_command “help *”

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Terminal Interface

106

Accessing the Operating System

Through the command line, you can access the operating system to use services
available there. You can set environment variables and enter UNIX commands.

This section shows you how to:

• Set environment variables.

• Enter UNIX commands.

• Display the name of the emulation module.

To set environment variables

• Type set <ENVIRONMENT VARIABLE>=<VALUE> .

You can set UNIX environment variables with the set command. The
<ENVIRONMENT VARIABLE> can be any UNIX environment identifier name.
The <VALUE> can be any string value. If the value has embedded spaces, use
double quotes around the string.

Example To set the PRINTER environment variable to lp -s, enter:

set PRINTER = "lp -s"

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

107

To enter UNIX commands

• Type !<UNIX_COMMAND>

• Type !<UNIX_COMMAND>! <options>

You can execute any UNIX command by preceding it on the command line with an
exclamation mark (!). The system creates a shell process and executes the
command line string following the exclamation mark.

If you enter only the exclamation mark (!), a command process is created and the
command shell is started. Exiting the command shell by typing exit returns you to
the emulator/analyzer interface.

You can precede and follow your UNIX command with exclamation marks. This
allows you to include options with your command, such as:

in_browser executes your UNIX command and provides results in a
scrollable window instead of a terminal window (default
display).

wait_for_exit waits for your UNIX command to finish its execution before
allowing the next command to begin. This is useful for
commands that require extra time to complete, such as "make".

no_prompt_
before_exit

used to speed operation when you don’t need the results
display. For example, this will complete a command without
prompting for the press of the RETURN key in commands that
would normally prompt for the RETURN key.

Examples Show the values of the current environment variables:

!set|more

Edit a command file previously created with the command:
log_commands to <FILENAME>

!vi <FILENAME>

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

108

See a directory listing in a browser window:

!ls! in_browser

Make files in a directory and hold off loading the executable file until the "make"
has finished:

!make! wait_for_exit ; load <file>

To display the name of the emulation module

• Using the command line, enter the name_of_module command.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

Examples To display the name of your emulation module:

name_of_module

The name of the emulation module is displayed on the status line.

Chapter 3: Using the Emulator/Analyzer Interface
Accessing the Operating System

109

110

4

Using the Emulator

How to control the processor and view system resources

111

The Emulator And Its Applications

The HP 64783 emulator helps you test and debug applications in real time. The
emulator is a functional replacement for MC68040 microprocessor. It provides
access to processor registers and memory, as well as complete execution run
control.

The emulator provides debugging capability for:

• embedded system hardware startup and test

• hardware/software integration

The emulator may also be used out-of-circuit as a code execution environment.
However, software development and testing will probably be handled best in a host
execution environment.

The emulation system is connected to a host computer by a LAN connection, or by
a serial (RS-232C) data communication link.

The emulation interface can display data and symbolic assembly code in windows,
or can additionally show the C-language source code intermixed with the assembly
code. You can start and stop execution of application code using the run and step
commands. Breakpoints can be placed at strategic locations to stop application
execution when a specific address is reached.

An application can communicate directly with the emulation interface by using the
simulated I/O library. This provides standard input and output, messaging and
access to the UNIX file system. During initial stages of development, an
application can print status and debugging messages to the emulation display using
simulated I/O. Files can be created, opened, read from, and written to on the host
system. These routines can be converted as target system hardware becomes
available.

Chapter 4: Using the Emulator
The Emulator And Its Applications

112

The demo Application

A demo program, and an associated configuration file, are provided with the
emulator. The demo application allows you to learn about the emulator without the
bother of writing and loading your own program.

The standard program was written in MC68000 assembly language. When the
emulator loads the program, it also defines a symbol table containing symbols from
the program. You can use these symbols when you’re making measurements using
the program.

The demo program emulates a hypothetical environmental control system for a
computer room. The name of the demo program is ecs.x.

For detailed information about the files used in the demo program, and methods
and requirements for starting the demo program, read the READMEDEMO and
README files in the directory named /usr/hp64000/demo/debug_env/hp64783.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the
emulation probe. Refer to Chapter 19, "Installation and Service", at the end of this
manual for instructions on how to install SRAM memory modules.

To build programs

1 Create source files in “C” or MC68040 assembly language using a text editor.

2 Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

3 Translate the assembly source files to relocatable object files using a compatible
MC68040 cross assembler.

4 Link all relocatable object files with the linker/loader to produce an absolute object
file in the IEEE-695 format. (The loaders for the HP language tools produce a file
with the extension .x for IEEE-695 format.) If you want to produce an absolute file
in the HP64000 format, specify the appropriate loader options. (The IEEE-695
format is better for emulation tasks.)

Chapter 4: Using the Emulator
The Emulator And Its Applications

113

5 (Optional) Build an SRU symbol database before entering emulation by entering
the srubuild <absfilename> command.

If you’re planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the MC68040 emulator. Usually,
this means that you’ll want your files in IEEE-695 absolute format. The HP
language tools for the HP 9000 produce this format.

Processor C Compiler Assembler

MC68040 HP B1463 HP B1465

You may use other language tools if they produce either IEEE-695 or HP64000
absolute file formats.

Other file formats, such as Motorola S-records and Tektronix hex format can be
converted to HP64000 format by using the HP 64888 utility software.

Chapter 4: Using the Emulator
The Emulator And Its Applications

114

To configure the emulator

• Configure the emulator to meet the resource needs of your target system and
application program by following the instructions in Chapter 8, "Configuring the
Emulator".

• To configure the emulator, choose Modify →Emulator Config Then answer
the questions that appear in the Emulator Configuration dialog box.

• Using the command line, enter:

modify configuration

This starts a series of questions whose answers define the emulator configuration.

You must configure the emulator to allocate system resources such as memory, and
to set handling of interrupts. You must do this before you load and execute
programs and make emulator measurements. Refer to Chapter 8, "Configuring the
Emulator".

If you want to use the examples in this manual, you must load a special
configuration file and load the demo program. See "To load the demo program" in
this chapter for more information.

Chapter 4: Using the Emulator
The Emulator And Its Applications

115

Loading and Storing Programs

The emulator provides commands that allow you to move files into emulation or
target memory from a host computer through the LAN or serial ports of the
HP 64700 Card Cage. You can also save a range of memory in an absolute file for
later reuse. (You might do this if you patch a section of code and need to do further
testing.)

Many different absolute file formats are supported. The primary ones used with the
emulator interface are the IEEE-695 and HP64000 absolute formats.

The load command has other options that allow you to control the load process.
Refer to the load command syntax in Chapter 11, "Emulator Commands".

To load a program

• Choose File→Load→Executable... In the dialog box, click on the name of the
executable file to load, and then click OK.

• Using the command line, load a program absolute file into emulation or target
memory by entering load [<memory_type>] <filename> [fcode <fcode>] .

<memory_type> is optional. emul_mem is emulation memory and
user_mem is target system memory. The default is to load all
memory.

<filename> is the name (including paths if needed) of an HP64000 or
IEEE-695 format absolute file. You do not need to specify the
extension if it is .x or .X.

<fcode> is an optional function code from the following list.

Chapter 4: Using the Emulator
Loading and Storing Programs

116

<fcode> Meaning

none

super
user

emulator load, defaults to supervisor
space
supervisor address space
user address space

The emulator can load HP64000 or IEEE-695 format absolute files into emulation
or target system memory. So, you can develop programs on your UNIX
workstation; then build the programs and load them into the emulator for
debugging.

Use the memory type parameter if you want to load only the parts of the program
that have addresses corresponding to those types of memory in the map.

Example To load the executable part of your absolute file into memory and any symbolic
information found in the absolute file, choose File→Load→Executable...

To load the executable part of your absolute file into memory but not load symbolic
information found in the absolute file, choose File→Load→Program Only...

To load only the symbolic information found in the absolute file (without loading
the executable part of your absolute file), choose File→Load→Symbols Only...

Suppose you are using two MMU mappings, one of which is user space from 1000
through 1fff hex. The other is supervisor space from 1000 through 1fff hex. You
have absolute files called userprog.x and supprog.x. To load these programs using
the command line, enter:

load userprog fcode user
load supprog fcode super

The programs are loaded into the correct address space.

Chapter 4: Using the Emulator
Loading and Storing Programs

117

To load the demo program

1 With your emulator interface not on screen, enter the following commands in a
terminal window:

cd /usr/hp64000/demo/debug_env/hp64783
Startemul <logical name>

Where <logical name> is the name assigned to your emulator. The default logical
name for the MC68040 emulator is m68040. For a detailed discussion of how to
find a logical name, refer to Chapter 1, "Getting Started".

2 The terminal window will ask you if you wish to copy the demo files to a different
directory. It is best to answer "y" to this question, and then supply the full path
name of your own demo directory.

The demo files will be copied and modified, as required, into the directory you
specify, and then the emulator interface will appear on screen. It will be ready for
you to run the demo procedure.

3 Press the Action keys from left to right and top to bottom to see the demo.

The demo program supplied with the MC68040 acts as a hypothetical
environmental control system for a computer room. You can use this program to
learn more about the emulator. Refer to the information on the demo program in the
reference part of this manual.

The examples in this manual use the demo program. To make the examples work
correctly, you must load the demo emulator configuration file and demo program as
described above.

Chapter 4: Using the Emulator
Loading and Storing Programs

118

To store a program

• Using the command line, transfer a range of memory locations from the emulator to
an HP 9000 file by entering the command:

store memory [fcode <fcode>] <expression> [thru
<expression>] [offset_by <offset>] to <filename>

<fcode> is an optional function code as follows:

<fcode> Meaning

none

super
user

emulator store, defaults to supervisor
space.
supervisor address space
user address space

<expression> specifies the starting (and ending, in thru <expression>)
addresses of the memory range to be stored.

<offset> optional value to be subtracted from <expression>.

<filename> is the name (including paths if needed) of a file to store the data.

If you patched a program or data structure by modifying memory, you may want to
save the memory image for comparison with other changes or for future testing.
The store command allows you to do this.

The store command creates absolute files in HP64000 format. The .X extension is
added automatically.

Example To save the memory locations of the init_system routine in an absolute file named
new, use the command line to enter:

store memory init_system thru init_system end to new

Chapter 4: Using the Emulator
Loading and Storing Programs

119

To edit files

• Choose File→Edit→File... and use the dialog box to specify the file name.

• To edit a file based on an address in the entry buffer, place the address reference
(either absolute or symbolic) in the entry buffer; and then choose File→Edit→At
() Location.

• To edit a file based on the current program counter, choose File→Edit→At PC
Location.

• To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and hold the select mouse button, and
choose Edit File At Symbol from the popup menu.

• To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
select mouse button, and choose Edit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error message if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to Chapter 13, "Setting X
Resources", for more information about setting this resource.

You must load symbols before most edit commands are available because symbol
information is needed to be able to locate the files.

Chapter 4: Using the Emulator
Loading and Storing Programs

120

Examples To edit a file that defines a symbol:

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted symbol
is defined.

Chapter 4: Using the Emulator
Loading and Storing Programs

121

To edit a file at the location of a source line:

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the highlighted
source line exists.

Chapter 4: Using the Emulator
Loading and Storing Programs

122

Using Symbols

When you load a program for the first time, the emulator uses the Symbolic
Retrieval Utilities (SRU) to build a symbol database for each module. This database
associates symbol names and symbol type information (not data types) with logical
addresses. You will see a message on screen showing the module for which the
database is being built.

Once a symbol database is created for a particular module, it does not need to be
rebuilt unless the module is changed. You can rebuild modules using the srubuild
utility (refer to the Symbol Retrieval Utilities, SRU, User’s Guide). If you reenter
emulation without building symbols, the emulator software automatically rebuilds
portions of the symbol database as you reference symbols in modified modules.
Usually, you should use srubuild after you rebuild your absolute files to save time
during emulation.

Global symbol information is immediately available for the file that you loaded. To
obtain local symbol information, you need to reference the module that contains the
symbols.

You can use the symbol names instead of addresses when entering expressions as
part of an emulation command. Therefore, you don’t have to remember address
information to make a measurement. Also, the emulator can display symbols within
the results of a measurement, using the set symbols on command. This helps you
relate the measurement to your original program.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to Chapter 13, "Setting X Resources").

The MC68040 emulator interface can read absolute files in HP-OMF or IEEE-695
format. For more information on SRU, refer to the Symbol Retrieval Utilities, SRU,
User’s Guide. Also refer to the information on symbol entry syntax in the
—SYMB— section of Chapter 11, "Emulator Commands".

When you load an absolute file into memory (unless you specify a load without
symbols), symbol information is also loaded. Both global symbols and symbols that
are local to a source file can be displayed.

Chapter 4: Using the Emulator
Using Symbols

123

To load a symbol database

• Choose File→Load→Symbols Only... In the dialog box, click on the name of the
desired symbols file, and then click OK.

• Using the command line, load a new symbol database by entering the command:

load symbols <filename>

<filename> is the name of the absolute file in HP64000 or IEEE-695 format for
which you want to load symbols.

The load symbols command is useful when your system uses several different
absolute files or when the target program resides in target ROM and is not loaded
through the emulator. The symbol database for the most recently loaded absolute
file is the current symbol database. If you want to use a symbol database from a
different absolute file without reloading the file, use the load symbols command to
load only the symbol database for that file.

Example Suppose you have a system that uses two absolute files, one called system.x and
another called task.x. You load these as follows:

load system.x
load task.x

The symbol database for task.x will be available because it was loaded last. To
reference symbols from system.x, use the command:

load symbols system.x

Now the symbol database for task.x will not be available.

Chapter 4: Using the Emulator
Using Symbols

124

To display global symbols

• Choose Display→Global Symbols.

• Using the command line, display global symbols by entering the command:

display global_symbols

The display global_symbols command displays a list of global (externally defined)
symbols in the program modules you have loaded into emulation or target memory.
The symbols list includes the address range associated with a symbol, the name of
the associated segment, and the offset of the symbol within the segment.

You can use the UP and DOWN cursor keys and the NEXT and PREV keys to
scroll or page through the global symbols listing.

Example Display the global symbols for the demo program:

display global_symbols

Chapter 4: Using the Emulator
Using Symbols

125

To display local symbols

• If you are using the Graphical User Interface:

• First place the name of the symbol whose local symbols should be displayed
into the entry buffer, and then in the menu bar, choose Display→Local
Symbols().

• When displaying symbols, position the mouse pointer over a symbol on the
symbol display screen and click the select mouse button.

• When displaying symbols, position the mouse pointer over the symbol, press
and hold the select mouse button, and choose Display Local Symbols from the
popup menu.

• Using the command line, display the symbols defined within a given symbol by
entering the command:

display local_symbols_in <symbol_name>

This command displays address information associated with each symbol. The
symbols defined within a given symbol are local to that symbol. That is, they are
defined as children of that symbol. See “To enter a symbol” for more information
on the <symbol_name>. If no local symbols are associated with your selection, the
interface displays the parent symbol.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

Example Display the local symbols for the update_sys module in the demo program:

display local_symbols_in update_sys(module)

Suppose that you had an IEEE-695 absolute file with a module named system and a
procedure within that module also named system. You could display the local
symbols for the procedure named system by entering:

display local_symbols_in system.system

Chapter 4: Using the Emulator
Using Symbols

126

To display the source reference address ranges:

display local_symbols_in system.c:

To display local symbols using the symbols display popup menu:

If local symbols exist within the scope of the symbol you chose, then the display
changes to show those symbols. Otherwise, the interface issues an error.

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

Chapter 4: Using the Emulator
Using Symbols

127

To display the parent symbol of a symbol

• When displaying symbols, position the mouse pointer over the symbol, press and
hold the select mouse button, and choose Display Parent Symbols from the popup
menu.

If a parent symbol does not exist for the highlighted symbol, this menu item will be
grayed-out and unresponsive to mouse clicks.

Examples

View the parent
symbol associated
with the highlighted
symbol by choosing
this menu item.

Chapter 4: Using the Emulator
Using Symbols

128

To copy and paste a full symbol name to the
entry buffer

• When displaying symbols, position the mouse pointer over the symbol, press and
hold the select mouse button, and choose Cut Full Symbol Name from the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you can be sure that you specified the complete
scope of the symbol, including all names of symbols that were truncated.

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

Chapter 4: Using the Emulator
Using Symbols

129

To enter a symbol

• Enter symbols according to the syntax shown in the —SYMB— syntax pages in
Chapter 11, "Emulator Commands".

Examples These are examples of some valid symbol entries:

Int_Cmd
demo.Main(procedure)
demo.EndLoop
handle_msg.Fill_Dest
handle_msg.Cmd_A
system.c:line10

Chapter 4: Using the Emulator
Using Symbols

130

To display the current directory and current
working symbol

• Choose Display→Context... A dialog box will open and show the name of the
current directory and current working symbol.

• Using the command line, display the name of the current directory by typing pwd,
and the name of the current working symbol by typing pws.

If you’re entering symbol names from several different modules, you may be
unsure which symbol is the current working symbol. The Display→Context... or
pws commands allow you to check this.

The pws and pwd commands aren’t available on the softkeys. You must type them
at the keyboard.

The directory context, included in the dialog box seen in the Graphical User
Interface is the directory accessed by all system references for files (primary load,
store, and copy commands) if no explicit directory is mentioned. Unless you have
changed directories since beginning the emulation session, the current directory
context is that of the directory from which you started the interface.

The current working symbol context is supported by the emulator/analyzer and the
Symbol Retrieval Utilities (SRU) working together. The current working symbol
represents an enclosing scope for local symbols. If symbols have not been loaded
into the interface, you cannot display or change the symbol context.

Chapter 4: Using the Emulator
Using Symbols

131

To change the directory context

• Choose File→Context→Directory and use the dialog box to select a new directory.

• Using the command line, enter the cd <directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see Chapter 13, "Setting X
Resources").

To change the current working symbol context

• Choose File→Context→Symbols and use the dialog box to select a new working
symbol context.

• Using the command line, enter the cws <symbol_context> command. (Because
cws is a hidden command and doesn’t appear on a softkey label, you have to type it
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (see Chapter 13,
"Setting X Resources").

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

Chapter 4: Using the Emulator
Using Symbols

132

Example The update_sys module of the demo program defines several symbols, including
get_targets, graph_data, and write_hdwr. You refer to these in a group of memory
display commands as follows:

display memory update_sys.get_targets blocked bytes
display memory update_sys.graph_data blocked bytes
display memory update_sys.write_hdwr blocked bytes

To save repeated typing of update_sys, enter:

cws update_sys

Then enter the memory display commands as:

display memory get_targets blocked bytes
display memory graph_data blocked bytes
display memory write_hdwr blocked bytes

Chapter 4: Using the Emulator
Using Symbols

133

Accessing Processor Memory Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check the results of a data write. Also, you may need to modify memory locations
to test different data sets for a program. The emulator has flexible memory
commands that allow you to view and modify memory as needed.

To display program data structures

• Place an absolute or symbolic address or file name containing the desired data
structures in the entry buffer. Then choose Display→Data Values→New () and
select the data type from the cascade menu. This clears the data values display and
adds a new item.

• Place the absolute or symbolic address of the desired data in the entry buffer. Then
choose Display→Data Values→Add () and select the data type from the cascade
menu. This adds data items to the data values display.

• Choose Display→Data Values if you have a display of data values on screen and
you want to update that display.

• Using the command line, display a program data structure by entering:

display data <lower> [thru <upper>] <type> {, <lower>
[thru <upper>] <type> } .

<lower> and <upper> are address expressions representing the lower and upper
boundaries of the memory range to be displayed.

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

134

<type> is a data type for display formatting as follows:

Type
Designator

Description

byte Hex display of one 8-bit location

word Hex display of one 16-bit location

long Hex display of one 32-bit location

int8 Display one 8-bit location as a signed integer (two’s
complement)

int16 Display one 16-bit location as a signed integer (two’s
complement)

int32 Display one 32-bit location as a signed integer (two’s
complement)

u_int8 Display one 8-bit location as an unsigned positive integer

u_int16 Display one 16-bit location as an unsigned positive integer

u_int32 Display one 32-bit location as an unsigned positive integer

char ASCII characters

You can use the display data command to display simple data types in your
program. This can make the display of simple variables easier to read because you
don’t have to visually sort a display (such as a memory display) to find the
locations of interest.

You can use symbols in the address expression.

Example To clear the data values display and add the target_temp static symbol from the
demo program:

display data target_temp byte

To add display of the aver_temp array from the demo program:

display data , aver_temp thru aver_temp end word

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

135

To display only source lines

• Choose Settings→Source/Symbol Modes→Source Only.

• Using the command line, enter:

set source only symbols on

Only high-level source lines are displayed in mnemonic memory and trace displays.

Examples To turn ON source lines in displays, and display memory in mnemonic format:

set source only symbols on
display memory main mnemonic

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

136

To display intermixed source lines

• Choose Settings→Source/Symbol Modes→Source Mixed.

• Using the command line, enter:

set source on symbols on

High-level source lines are intermixed with assembly language instructions in
mnemonic memory and trace displays.

Examples To turn ON source lines in displays, and display memory in mnemonic format:

set source on symbols on
display memory main mnemonic

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

137

To display symbols without source lines

• Choose Settings→Source/Symbol Modes→Symbols.

• Using the command line, enter:

set source off symbols on

Symbols are included in memory mnemonic, trace, breakpoints, and register step
displays.

Examples To turn ON symbols in displays, and display memory in mnemonic format:

set source off symbols on
display memory main mnemonic

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

138

To display absolute addresses

• Choose Settings→Source/Symbol Modes→Absolute.

• Using the command line, enter:

set source off symbols off

No symbols or source lines are included in mnemonic memory or trace displays.

Examples To turn OFF symbols and source lines in displays, and display memory in
mnemonic format:

set source off symbols off
display memory main mnemonic

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

139

To display memory in byte format

• Choose Display→Memory→Hex()→bytes. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

• Using the command line, display a range of memory in byte format by entering:

display memory <lower> [thru <upper>] bytes

To format the memory listing as a single column, add the keyword absolute before
the data type in the display memory command. To format the memory listing as
multiple columns, add the keyword blocked before the data type in the display
memory command.

Example Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end bytes

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

140

To display memory in word format

• Choose Display→Memory→Hex()→words. If you want to include a line range
or starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

• Using the command line, display a range of memory in word format by entering:

display memory <lower> [thru <upper>] words

To format the memory listing as a single column, add the keyword absolute before
the data type in the display memory command. To format the memory listing as
multiple columns, add the keyword blocked before the data type in the display
memory command.

Example Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end blocked
words

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

141

To display memory in long word format

• Choose Display→Memory→Hex()→long. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

• Using the command line, display a range of memory in long word format by
entering:

display memory <lower> [thru <upper>] long

To format the memory listing as a single column, add the keyword absolute before
the data type in the display memory command. To format the memory listing as
multiple columns, add the keyword blocked before the data type in the display
memory command.

Example Display the processor’s interrupt vector table:

display memory 0 thru 3ffh absolute long

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

142

To display memory in mnemonic format

• Choose Display→Memory→Mmemonic() or Mnemonic at PC. If you want to
include a line range or starting point in your command, enter it into the entry buffer
before you choose the Mnemonic() command.

• Using the command line, display memory in mnemonic format by entering:

display memory <lower> [thru <upper>] mnemonic

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

When you display memory mnemonic, the emulator disassembles the memory
locations beginning with the first address you specify. If this address is not the
starting address of an instruction, the display will be incorrect.

To offset the addresses in the memory mnemonic display, add the parameter
offset_by <expression> to the end of the display memory command line.
<expression> is an address expression that is subtracted from each address in the
memory display. If code gets relocated, and therefore makes symbolic information
obsolete, you can use the offset_by option to change the address information so
that it again agrees with the symbolic information. You can also use offset_by to
change listed addresses so that they match addresses in compiler or assembler
listings.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on what you choose with the Settings→Source/Symbols
Modes or Settings→Display Modes pulldown menu items.

Use the set symbols on command to display symbol information for addresses in
the memory mnemonic display.

If symbols are loaded into the interface, the default is to display source only.

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

143

Examples To display memory for the main part of the demo program, enter main in the entry
buffer and choose Display→Memory→Mmemonic(), or enter on the command
line:

display memory main mnemonic

Display the write_hdwr routine for the update_sys program in mnemonic format,
with symbols in the address column:

set symbols on
display memory update_sys.write_hdwr thru write_hdwr end
mnemonic

To return to the previous mnemonic display

• Choose Display→Memory→Mmemonic previous.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint the line following the function call, and run the
program from the current program counter.

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

144

To display memory in real number form

• Choose Display→Memory→Real()→<real type>. If you want to include a line
range or starting point in your command, enter it into the entry buffer before you
execute this command. <real type> may be short, long, extended, or packed.

• Using the command line, enter commands as follows:

1 Display memory values as 32-bit (IEEE-754 single precision) real numbers by
selecting:

display memory <lower> [thru <upper>] real short

2 Display memory values as 64-bit (IEEE-754 double precision) real numbers by
selecting:

display memory <lower> [thru <upper>] real long

3 Display memory values as 96-bit (IEEE-754 double extended precision) real
numbers by selecting

display memory <lower> [thru <upper>] real extended

4 Display memory values as 96-bit Motorola Packed real numbers by selecting:

display memory <lower> [thru <upper>] real packed

Real numbers use the formats defined by the IEEE Standard for Binary
Floating-Point Arithmetic. They can be short (32 bits), long (64 bits), or extended
(96 bits).

Example To display a set of data values in real numbers, beginning with the floating
humidity in the demo program, place the global symbol float_humid in the entry
buffer and choose Display→Memory→Real()→long. If using the command line,
enter:

display memory float_humid real long

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

145

To redisplay memory locations

• Choose Display→Memory.

• Using the command line, redisplay memory with the same address range and
format as the previous memory display by selecting:

display memory

The last range and format options are maintained in the interface. When you
display memory without specifying the location or format for the display, the
previous options are used.

To display memory repetitively

• Choose Display→Memory→Repetitively.

• Using the command line, continuously display memory with:

display memory repetitively

This command continuously updates the memory display. Use this only to monitor
memory while running your target code; it requires a lot of CPU time. To allow the
current memory display to be updated whenever the emulator detects a
modification to memory content (such as loading a file, or setting a software
breakpoint) use the set update command, or Settings→Display Modes....

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

146

To modify memory

• Choose Modify →Memory, or enter the desired memory location and new value in
the entry buffer and click on Modify →Memory at (). The equivalent command
will be shown on the command line. Complete the command by entering
appropriate information on the command line.

• Using the command line, enter commands as follows:

• To modify a single memory location to a single value, select:

modify memory <address> to <value>

• To modify a range of memory locations to a single value, select:

modify memory <lower> thru <upper> to <value>

• To modify a range of memory locations with a list of values, select:

modify memory <lower> thru <upper> to
<value1>,<value2>,

• To change whether memory is modified by bytes, words, or long words, add
the <mode> parameter before the to keyword.

• To modify memory as real numbers, select:

modify memory <lower> [thru <upper>] real [short|long]
to <real1>[,<real2>, ...]

• To modify a sequence of bytes to an ASCII string literal, select:

modify memory <lower> thru <upper> string to “<string>”

The <address> parameter is an expression representing a single address location.
The <lower> and <upper> values are address expressions representing the lower
and upper boundaries of the memory area to be modified. <value> represents the
data value to which the contents of memory are to be modified. The <string> is a
character string.

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

147

The <mode> parameter can be either bytes, words, or long. Otherwise, the mode
specified by the last display memory command determines how data is displayed.
If you selected "Any" when you specified "Memory Access Size" as part of the
emulation configuration, the size you specify here will be used to access memory
for the modification you specify.

Examples Modify the byte at e1f hex to 43 hex:

Choose Modify →Memory, and on the command line, type 0e1fh to 43h

modify memory 0e1fh to 43h

The above example assumes that byte mode was in effect. If not, add the mode
parameter:

modify memory 0e1fh bytes to 43h

Modify the memory using a symbol:

modify memory erno bytes to 43h

Modify the range of locations from e00 through e38 to zero:

modify memory 0e00h thru 0e38h to 0

Modify the range of locations from 0e00 through 0e38 to “ABC”:

modify memory 0e00h thru 0e38h bytes to 41h,42h,43h

Modify the memory at e00 hex to the string “This is a string”:

modify memory 0e00h string to “This is a string\n\0”

Remember that the memory modification is affected by the display mode. Suppose
that locations f00 and f01 each contain 01. If you enter the command:

modify memory 0f01h bytes to 3h

Then location f00 contains 01 and location f01 contains 03. But, if you entered:

modify memory 0f00h words to 3h

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

148

Then location f00 will contain 00, and location f01 will contain 03. Notice that you
refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68040 processor architecture).

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

149

Using Processor Run Controls

When you don’t use an emulator, run control can be difficult. Usually, you’re
limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or if the
program logic is faulty.

By using the emulator, you can run the processor from the current program counter
or any desired address. If you want to examine the system after each program
instruction, you can use the step command to step through the program. You can
break to the monitor program to examine on-chip resources such as RAM and
registers, and you can reset the processor from the emulator.

To run a program

• Choose Execution→Run and select the desired starting point from the submenu, or
select until() to specify the ending point. Enter the starting or ending address in the
entry buffer before you choose a command that contains from() or until() .

• Using the command line, enter commands as follows:

• To run a program from the current program counter (PC) value, enter:

run

• To run a program from a specific address, enter:

run from <—EXPR—>

 Where <—EXPR—> is a valid address expression that may include symbols.

• To run a program from the reset vector, enter:

run from reset

• To run a program from its transfer address, enter:

Chapter 4: Using the Emulator
Using Processor Run Controls

150

run from transfer_address

When you’re ready to start a program run, either to test target system operation or
make an analyzer measurement, you use the run command.

<—EXPR—> is a 32-bit address expression. You can include supervisor or user
function codes to specify the privilege level for the run command.

The run from reset command pulses the processor reset line. The processor fetches
the values at offsets 0 and 4 from the vector table, loads these values into the
interrupt stack pointer and program counter registers, and then begins running from
the program counter address value.

A run command causes the emulator processor to begin running from the current
program counter, provided that the emulator is not in the reset state. If the emulator
is in the reset state, the run command (with no parameters) is equivalent to a run
from reset command, unless the run command is preceded by a break command.

If you reset the emulator, break to the monitor, and then run the emulator, the stack
pointer and program counter values are taken from the values supplied to
configuration items instead of from the reset vector locations. Refer to Chapter 8,
"Configuring the Emulator", for more information about setting the initial stack
pointer and program counter values.

Examples To run from the demo program’s starting location:

Enter main in the entry buffer, and choose Execution→Run→from() .

Or, on the command line, enter:

run from main

To run programs from the current program counter value:

Choose Execution→Run→from PC, or on the command line, enter:

run

Chapter 4: Using the Emulator
Using Processor Run Controls

151

To run programs from the transfer address

• Choose Execution→Run→from Transfer Address.

• Using the command line, enter:

run from transfer_address

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface as the "transfer address".

Before you can run from the transfer address, it must exist in the absolute file, and
you must load symbols along with the program code from the absolute file. If the
interface does not detect a transfer address, this menu item is grayed-out and
unresponsive to mouse clicks.

To run programs from reset

• Choose Execution→Run→from Reset.

• Using the command line, enter:

run from reset

This command resets the emulation processor and begins executing your target
program at either the start address for the processor, or at the address fetched from
the reset vector for the processor. It may be necessary to supply a reset signal from
your target system as well. See your processor-specific documentation for
information about the exact mechanism involved.

Chapter 4: Using the Emulator
Using Processor Run Controls

152

To run programs until a selected address occurs

• When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and hold the select mouse button and
choose Run Until from the popup menu.

• Place the address you want to run until in the entry buffer; then choose
Execution→Run→until() .

• Using the command line, enter:

run until <address>

When you run until an address, a breakpoint is set at the address and the program is
run from the current program counter until the breakpoint is hit.

This command is useful for bypassing large areas of code. For example, you may
want to run your program through the program startup code until the "main"
function begins so that you can begin testing your code at "main".

When using the command line, you can combine the various types of run-from
commands with the run-until command; for example, you can run from the transfer
address until the start of a routine you wish to test.

You may need to enable breakpoints before "run until" will work. See "To enable
or disable the breakpoint feature" later in this chapter.

Chapter 4: Using the Emulator
Using Processor Run Controls

153

To break to the monitor

• Choose Execution→Break.

• Using the command line, cause the emulation processor to break from execution of
your target program and start execution in the monitor by entering:

break

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. During a run that
is restricted to real-time execution, you must break execution to the monitor before
executing any emulation commands that access registers, emulation memory that is
not dual-port, or target system memory. You also can use the break command to
pause your target program execution.

Execution breakpoints and run until <address> commands can be used to break to
the monitor at selected points in your target program.

The status line changes to “Running in monitor.”

If you enter a break command while the processor is in a wait state (hung bus
cycle), the emulator may terminate hung target bus cycles in an attempt to
transition into the monitor. A bus cycle is considered hung when the target system
has not provided the required termination within 300 ms. The emulator never
attempts to terminate hung bus cycles in program space. The emulator will
generate a status message for each address where it forcefully terminates a bus
cycle. You can determine emulator status (Display→Status) to get information
about a hung bus cycle before initiating a break (and accept the termination side
effect) or use the reset command.

Chapter 4: Using the Emulator
Using Processor Run Controls

154

To step the processor

• Choose Execution→Step Source or Execution→Step Instruction. Select the
starting point for processor stepping from the associated submenu. If you will enter
a command that requires a starting address, enter that address in the entry buffer
before entering the command.

• Using the command line, enter commands as follows:

• To step the processor one instruction from the current program counter value,
enter:

step

• To step one line of high level source, enter:

step source

• To step the processor <count> number of times from the current program
counter value, enter:

step <count>

• To step the processor one instruction from an address given by <address>, type:

step from <address>

• To step the processor <count> number of times from an address given by
<address>, type:

step <count> from <address>

• To suppress display of registers for intermediate steps of a multi-step
execution, add the silently parameter after the step <count> command.
(<count> must be greater than one.) This is only effective when stepping is
done in the same interface displaying registers.

The step command lets you single-step the processor through program code. Step
Source executes one line in your high-level source program; Step Instruction
executes one line of your assembly language program.

Chapter 4: Using the Emulator
Using Processor Run Controls

155

When displaying memory mnemonic, a highlighted bar shows the current program
counter address. After each step, the highlighted bar moves to the new PC address.
When displaying registers, the registers are updated after every step.

You can open multiple windows to show memory mnemonic and registers at the
same time. Both are updated with each step.

If you omit the <address>, the current program counter value is used. You can use
transfer_address to step from the entry point of the program.

When stepping through instructions associated with source lines, execution may
take a long time and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation, you can abort the step command by
pressing <CTRL>c.

The emulator uses the built-in tracing capability of the MC68040 processor to
single step assembly instructions. The emulator needs the trace exception vector
(located at offset 0x24 in the vector table) to be set properly in order to single step
instructions. When a step command is given to the emulator, the emulator reads the
trace exception vector and attempts to change one or more vector table entries if the
trace exception vector is not set correctly. As long as the vector table is located in
emulation memory or target RAM, stepping should always succeed. Upon
completion of single stepping, the emulator restores modified vector table entries
and issues a status message the first time the vector table is modified.

If the trace exception vector does not contain the correct value and the vector table
is located in target ROM, the emulator will issue an error message and not perform
the single step. There are two ways to deal with this situation. Either alter the
ROM-based code so the trace vector contains the correct value, or copy/relocate the
vector table into emulation memory or target RAM.

The correct value of the trace exception vector differs, depending on whether you
are using a background or foreground monitor. The foreground monitor requires
that the trace exception vector point to the TRACE_ENTRY address in the monitor
(located at offset 0x680 from the start of the monitor). If the trace exception vector
already contains the correct value, the emulator performs the single step without
modifying the vector table. Otherwise, the emulator attempts to change the trace
a-line and f-line exception vectors to the TRACE_ENTRY address in the
foreground monitor.

The background monitor only requires that the trace exception vector be an even
value and point to readable memory. This allows the processor to complete trace
exception processing, including initial prefetches from the trace exception handler,
during transition into the background monitor. After reading the trace exception

Chapter 4: Using the Emulator
Using Processor Run Controls

156

vector, the emulator attempts to read from the address it points to. If the read
succeeds, the emulator single steps without modifying the vector table. Otherwise,
the emulator attempts to write the current value of VBR into the trace exception
vector (because the vector table is readable).

There are some limitations when single stepping. A step may fail when single
stepping an instruction that changes the address of the vector table (modifies the
VBR register). With the background monitor, instructions that can be interrupted
(ie: floating-point operations) may not complete because the emulator generates an
interrupt after a finite amount of time after the single step is initiated.

Examples To step the processor one instruction from its present location, choose
Execution→Step Instruction→from PC, or on the command line, enter:

step

To step the processor three instructions from the current program counter:

step 3

To step the processor five source-level instructions from the init_system symbol in
the demo program:

step 5 source from init_system

To step once from the program entry point, choose
Execution→Step Instruction→from Transfer Address, or on the command line,
enter:

step from transfer_address

Chapter 4: Using the Emulator
Using Processor Run Controls

157

To reset the processor

• Choose Execution→Reset.

• Using the command line, enter commands as follows:

• To reset the emulation processor from the emulator, enter:

 reset

• To reset the emulator from the target system, assert the RESET signal in your
target system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to Chapter 8, "Configuring the Emulator", for more information.)

Sometimes you may want to reset the emulation processor prior to a program run.
The reset command allows you to do this. Or, you can reset the emulation
processor from the target system.

The MC68040 emulator will respond to a target system reset. A target system reset
does not reset the entire emulator. It resets only the emulation processor.

If the emulator is running a user program when the target system reset occurs, it
will behave as if a run from reset command were issued.

If the MC68040 emulator is in the monitor when the target reset occurs, it will
reenter the monitor when the reset is released.

The reset command holds the processor in the reset state until a break, run, or step
command. A CMB command can cause the emulator to run from reset. Also, a
request to access memory or registers may cause a break into the monitor.

Chapter 4: Using the Emulator
Using Processor Run Controls

158

Viewing and Modifying Registers

The emulator allows you to display registers to determine the results of program
execution. You can display a single register, or you can display groups of related
registers.

Sometimes you may want to modify a register, and then run a segment of program
code to test the results.

To display registers

• Choose Display→Registers→BASIC, or FPU, or MMU to display the desired
register class.

• Using the command line, enter commands as follows:

• To display an individual register, enter:

display registers <register_name>

where <register_name> is one of the names shown in the table on the next
page.

• To display the basic processor register set, enter:

display registers or display registers BASIC

• To display the floating-point registers, enter:

display registers FPU

The available registers and register classes are in the table on the following page.

Chapter 4: Using the Emulator
Viewing and Modifying Registers

159

The processor must be running to allow register displays. If it’s running in the
monitor, the emulator does the display directly. If the emulator is reset, it will try
to break to the monitor. If it’s running the target system program, the emulator
forces a break to the monitor, gets the register data, and then returns to the user
program. (If you restrict the emulator to real-time runs, the display registers
command isn’t allowed while you’re running your target program. Refer to
Chapter 8, "Configuring the Emulator.")

The MMU register class of the MC68EC040 is different from the MMU register
class of the MC68040 and MC68LC040. The MC68EC040 uses registers
DACR0/IACR0 and DACR1/IACR1, which are nearly identical to DTT0/ITT0 and
DTT1/ITT1. These MC68EC040 registers are displayed in the DTT0/ITT0,
DTT1/ITT1 registers, respectively.

The TTRs are still usable when the MMU is disabled and correspond with ACRs.

Examples Display the processor’s A0 register:

display registers A0

Register Class Register Names

BASIC PC, STATUS, USP, ISP, MSP, CACR, D0..D7, A0..A7, VBR,
DFC, SFC

FPU FPCR, FPSR, FPIAR, FP0..FP7

MMU ITT0, DTT0, ITT1, DTT1, MMUSR, TC, URP, SRP

Chapter 4: Using the Emulator
Viewing and Modifying Registers

160

To modify registers

• Choose Modify →Register..., and in the dialog box, type in the register name and
new value.

• Using the command line, modify a register to a new value by typing:

modify register <regname> to <value>

Where <regname> is the name of a processor register, and <value> is an expression
matching the data type of the register (byte or word).

You can enter values into the three FPU control registers using numbers in the
following bases: hexadecimal, decimal, octal, and binary. (You can’t use symbols
for the floating-point registers.)

You can enter values into the eight floating-point registers using either
floating-point or hexadecimal notation. Special values, such as denormals, infinity,
and NaN (Not a Number) can be entered by using hexadecimal notation. The
following are examples of acceptable entries for the floating-point registers:

+12.34e+56
-1.E23
.1e-23
1.2
.7
7654321
0000.000001
7fff0000ffffffffffffffffH

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you
might stop the processor at a certain point (use a software breakpoint), and then
modify a register and run from that point to test the result.

The register is displayed after modification to confirm the change.

The processor must be running to allow modifying registers. See "To display
registers" above for more information.

Chapter 4: Using the Emulator
Viewing and Modifying Registers

161

Examples To modify a register, choose Modify →Register..., and fill in the dialog box.

To use the command line to modify the PC register to an address:

modify register PC to init_system

To use the command line to modify the D3 register to 0:

modify register D3 to 0

Place the mouse pointer in
the text entry area and type
in the name of the register
and the new value.

Click this pushbutton to
read the present value of
the selected register.

Click Recall to select
register names and
values from predefined
or previously specified
entries.

Click this pushbutton
and select the desired
type from the submenu.

Click OK to modify
the register to the new
value and close the
dialog box.

Click Apply to modify
the register to the value
specified and leave the
dialog box open.

Click this pushbutton to
cancel the modification and
close the dialog box.

Chapter 4: Using the Emulator
Viewing and Modifying Registers

162

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular address and
transfer control to the emulation monitor. Suppose your system crashes when it
executes in a certain area of your program. You can set a breakpoint in your
program at a location just before the crash occurs. When the processor executes the
breakpoint, the emulator will force a break to the monitor. You can display registers
or memory to understand the state of the system before the crash occurs. Then you
can step through the program instructions and examine changes in the system
registers that lead up to the system crash.

Execution breakpoints are implemented using the BKPT instruction of the
MC68040. You can enable, disable, set, or clear execution breakpoints.

Set execution breakpoints at the first word of program instructions. Otherwise,
your BKPT may be interpreted as data and no breakpoint cycle will occur. When
the BKPT instruction is executed, target program execution stops immediately
(unlike using the analyzer to cause a break into the monitor, which may allow
several additional bus cycles to execute before the break finally occurs).

Setting execution breakpoints in RAM

When you set an execution breakpoint in RAM, the emulator will place a
breakpoint instruction (BKPT) at the address you specified, and then read that
address to ensure that the BKPT instruction is there. The program instruction that
was replaced by BKPT is saved by the emulator.

When the breakpoint instruction is executed, the BKPT acknowledge cycle is
detected by the emulator, and the emulator causes a break to the monitor. At this
point, the emulator replaces the BKPT instruction with the original instruction it
saved. It also replaces the BKPT instruction with the original instruction whenever
you disable or remove the breakpoint.

The emulator allows an unlimited number of breakpoints to be set in RAM.

Chapter 4: Using the Emulator
Using Execution Breakpoints

163

Setting execution breakpoints in ROM

If you try to set an execution breakpoint at a location in ROM, the emulator will
attempt to set the breakpoint as it does in RAM, but it will fail because the
instruction in ROM will not change. Then the emulator will set up a hardware
resource to "jam" the BKPT instruction onto the data bus when the processor
attempts to fetch the normal instruction from the breakpoint address.

There are only enough resources in hardware to specify eight ROM breakpoints at
one time.

To determine if an active breakpoint uses one of the eight hardware resources,
display the address in memory. Breakpoints implemented in software will show a
BKPT instruction at the breakpoint address. Breakpoints implemented using one of
the eight hardware resources will show the original instruction at the breakpoint
address.

Execution breakpoints in ROM when the MMU
manages memory

If the MMU is enabled when setting an execution breakpoint in ROM, the emulator
translates the logical breakpoint address and uses the physical address to set up the
emulation hardware resource.

In the unlikely event that multiple logical addresses translate to the same physical
address in ROM, or that ROM address translations change while the breakpoint is
set, it is possible for the breakpoint to be jammed onto the data bus for the wrong
logical address.

Chapter 4: Using the Emulator
Using Execution Breakpoints

164

Using temporary and permanent breakpoints

When you set a temporary execution breakpoint, the emulator creates the
breakpoint as described in the preceding paragraphs. When the breakpoint
instruction is executed, the emulator breaks to the monitor and removes the
breakpoint. Now you can execute that portion of program code as often as you like
and the breakpoint will not occur again, unless you enable it again.

When you set a permanent breakpoint, the emulator will process it the same as a
temporary breakpoint, but when the breakpoint instruction is executed, the original
instruction will only replace the breakpoint instruction during its next execution.
This allows you to step through the original instruction one time. After your first
step, the BKPT instruction will replace the original instruction again so that the
breakpoint will occur the next time the breakpoint address is hit.

Permanent breakpoints remain in effect until you explicitly disable or remove them.

Permanent breakpoints are available when using version A.04.00 or greater of the
emulation system firmware.

Chapter 4: Using the Emulator
Using Execution Breakpoints

165

To enable execution breakpoints

• Choose Breakpoints→Enable.

• Inside the breakpoints list display, press and hold the select mouse button and then
choose Enable/Disable Software Breakpoints from the popup menu.

• Using the command line, enable breakpoints with:

modify software_breakpoints enable

You must enable breakpoints before you can set, inactivate, or clear any
breakpoints.

Once you have enabled breakpoints, you can enter new ones into the breakpoint
table. Note that if you enable breakpoints, add several, and then disable them, they
all become inactive. If you reenable the breakpoints feature, you must choose
Breakpoints→Set All, or on the command-line, enter modify
software_breakpoints set if you want to set all the existing breakpoint entries.

To disable an execution breakpoint

• Choose Breakpoints→Enable again. The Breakpoints→Enable selection is a
switch.

• Inside the breakpoints list display, press and hold the select mouse button and then
choose Enable/Disable Software Breakpoints from the popup menu.

• Using the command line, disable breakpoints with:

modify software_breakpoints disable

Chapter 4: Using the Emulator
Using Execution Breakpoints

166

Sometimes you will want to temporarily disable the execution breakpoints feature
without removing the existing breakpoints. Use one of the above commands to do
this.

When you disable breakpoints, the emulator replaces the BKPT instructions at all
breakpoint locations with the original instructions. It marks the breakpoint table
entries as “inactive.” The processor won’t break to monitor when the instructions at
inactive locations are executed.

If you later enable breakpoints, the ones in the table are still inactive. To use them,
you must set them by choosing Breakpoints→Set All, or on the command-line,
entering the modify software_breakpoints set command.

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line where you wish to set the breakpoint and click the select mouse
button. Or, press and hold the select mouse button and choose Set/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints→Permanent()

Using the command line, enter the command:

modify software_breakpoints set <address> permanent

The breakpoints feature must be enabled before individual breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

Chapter 4: Using the Emulator
Using Execution Breakpoints

167

To set a temporary breakpoint

• Type in the absolute or symbolic address of the breakpoint you want to set in the
entry buffer. Then choose Breakpoints→Temporary(), (or choose
Breakpoints→Set() if your version of HP 64700 system firmware is less than
A.04.00).

• Choose Breakpoints→Set All to set all existing breakpoints in the breakpoint table.

• Inside the breakpoints list display, press and hold the select mouse button and then
choose Set All Breakpoints from the popup menu.

• Using the command line, enter comands as follows:

• To set a breakpoint at a location given by <address>, enter:

modify software_breakpoints set <address>

• To set all existing breakpoints in the breakpoint table, enter:

modify software_breakpoints set

To add a new breakpoint, you can choose Breakpoints→Temporary() with the
name of the new breakpoint in the entry buffer, or use the modify
software_breakpoints set command and specify the address for the breakpoint.
You can also use this method to reenable an existing breakpoint at that address.

If you choose Breakpoints→Set All, or use the modify software_breakpoints set
command without an address parameter, all existing breakpoints in the breakpoints
table will be enabled. The breakpoints feature must be enabled before individual
breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

Chapter 4: Using the Emulator
Using Execution Breakpoints

168

Examples Set a new breakpoint at get_targets:

modify software_breakpoints set update_sys.get_targets

Reenable all existing breakpoints:

modify software_breakpoints set

To set a ROM breakpoint in RAM

• Type in the name of the breakpoint you want to set in the entry buffer. Then
choose Breakpoints→Force HW→Permanent() or Temporary().

• Using the command line, enter:

modify software breakpoints set <ADDRESS> permanent (or
temporary) force_hw

There may be times when you want to have the emulator use one of its eight
hardware resources to ensure an emulation break at a RAM address. For example,
you may know that the program in ROM will overwrite the RAM address before
the breakpoint is executed. Normally, this will eliminate the breakpoint instruction.
The above commands ensure that the breakpoint will be executed at the specified
address, regardless of how the software at that address may change during
execution.

Chapter 4: Using the Emulator
Using Execution Breakpoints

169

To clear an execution breakpoint

• Type in the name of the breakpoint you want to clear in the entry buffer. Then
choose Breakpoints→Clear().

• Choose Breakpoints→Clear All to clear all existing breakpoints in the breakpoint
table.

• Inside the breakpoints list display, press and hold the select mouse button and then
choose Clear (delete) Breakpoint from the popup menu to clear the selected
breakpoint.

• Using the command line, enter comands as follows:

• To remove an existing breakpoint at a location given by <address>, enter:

modify software_breakpoints clear <address>

• To remove all existing breakpoints, enter:

modify software_breakpoints clear

When you’re finished using a particular breakpoint, you should clear the breakpoint
table entry. The original instruction is restored to memory, and the breakpoint table
entry is removed.

Chapter 4: Using the Emulator
Using Execution Breakpoints

170

Examples To clear a breakpoint using the breakpoints display popup menu:

To clear an existing breakpoint at get_targets:

modify software_breakpoints clear update_sys.get_targets

To clear all existing breakpoints:

modify software_breakpoints clear

Bring up the menu
and choose this
item to clear the
highlighted
breakpoint.

Chapter 4: Using the Emulator
Using Execution Breakpoints

171

To clear all execution breakpoints

• When displaying breakpoints, position the mouse pointer within the breakpoints
display screen, press and hold the select mouse button, and choose Clear (delete)
All Breakpoints from the popup menu.

• Choose Breakpoints→Clear All .

• Using the command line, enter:

modify software_breakpoints clear

To display the status of all execution breakpoints

• Choose Breakpoints→Display or Display→Breakpoints.

• Using the command line, display the status of all breakpoints by selecting:

display software_breakpoints

The breakpoints table shows you whether the breakpoints feature is currently
enabled or disabled. Also, the status is shown for each breakpoint in memory. If
“Pending,” the BKPT instruction is in memory at that location and the breakpoint is
set. If “Inactive,” the memory location contains the original instruction, and the
breakpoint will not be executed.

Active breakpoints are indicated in the memory mnemonic display by asterisks
beside the lines with breakpoints set.

The status of a breakpoint can be:

temporary Which means the temporary breakpoint has been set but
not encountered during program execution. These

Chapter 4: Using the Emulator
Using Execution Breakpoints

172

breakpoints are removed from the breakpoint table when
the breakpoint is encountered.

pending Which means the temporary breakpoint has been set but
not encountered during program execution. These
breakpoints are inactivated when the breakpoint is
encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary
and permanent breakpoints may be inactivated using the
breakpoints display popup menu.

In the breakpoints display, a popup menu is available, obtained by pressing the
select mouse button. You can set, inactivate, or clear breakpoints as well as enable
or disable the breakpoints feature from the popup menu.

Chapter 4: Using the Emulator
Using Execution Breakpoints

173

Changing the Interface Settings

This section shows you how to:

• Set the source/symbol modes.

• Set the display modes.

To set the source/symbol modes

• To display assembly language mnemonics with absolute addresses, choose
Settings→Source/Symbol Modes→Absolute.

• To display assembly language mnemonics with absolute addresses replaced by
global and local syumbols where possible, choose
Settings→Source/Symbol Modes→Symbols.

• To display assembly language mnemonics intermixed with high-level source lines,
choose Settings→Source/Symbol Modes→Source Mixed.

• To display only high-level source lines, choose
Settings→Source/Symbol Modes→Source Only.

Using the command line, enter commands as follows:

• To display mixed source and assembly language, enter:

set source on

• To display only source language statements, enter

set source only

• To display only assembly language, enter:

set source off

Chapter 4: Using the Emulator
Changing the Interface Settings

174

The source/symbol modes affect mnemonic memory displays and trace displays.
Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

• Source only for mnemonic memory displays.

• Source mixed for trace listing displays.

To set the display modes

• Choose Settings→Display Modes... to open the display modes dialog box.

Press and hold the select mouse button and drag
the mouse to select "Source Only", "Source
Mixed", or "Off".

Clicking toggles whether symbolic information is
displayed.

Move the mouse pointer to the text entry area and
type in the desired field widths.
 Label Field sets the width of the Label:/Address
field.
 Mnemonic Field sets the width of the Opcode or
Status field.
 Symbols in Mnemonic Field sets the widths of
symbols shown in the Opcode or Status field.
 Source Lines field sets the width of lines that
show source-file lines.

Clicking toggles auto update settings.

Clicking this checkbox changes all
display mode settings to their defaults.

Clicking:
 OK saves changes and closes dialog box.
 Apply saves changes and leaves dialog box
 open.
 Cancel closes dialog box and ignores changes.

Chapter 4: Using the Emulator
Changing the Interface Settings

175

Source/Symbols View

Source in Memory specifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Trace specifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addresses specifies whether symbols are included in displays.

Tab Expansion sets the number of spaces displayed for tabs in source lines.

Field Widths

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Field sets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Lines sets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displays (Except Mnemonic) toggles whether memory displays are
automatically updated after commands that change memory contents or whether
you must enter memory display commands to update the display. You may wish to
turn off memory display updates, for example, when displaying memory mapped
I/O.

Memory Mnemonic Auto PC toggles whether the mnemonic memory display is
automatically updated to follow the PC or remain unchanged.

Trace Displays toggles whether trace displays are automatically updated when
trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

Chapter 4: Using the Emulator
Changing the Interface Settings

176

Using the Emulator In-Circuit

As your target system design progresses, you will want to test features of your
program that will interact with your target system hardware instead of emulation
memory hardware.

You must connect the emulator probe to your target system to do in-circuit
emulation. Then you can make analyzer measurements and have the memory
display and other capabilities of the emulator to debug target system problems.

CAUTION When you use the emulator in-circuit, you need to carefully consider the
relationship of the emulator to your target system design. Refer to Chapter 18,
"Connecting the Emulator to a Target System", later in this manual. It discusses
things you need to know to successfully connect the emulator to a target system and
overcome problems you may encounter. Refer to Chapter 8, "Configuring the
Emulator", for details of the emulation configuration.

To install the emulation probe

CAUTION Possible damage to the emulator probe. The emulation probe contains devices that
are susceptible to damage by static discharge. Take precautions before handling the
probe to avoid damaging the internal components of the probe with static
electricity.

CAUTION Possible damage to the emulator. Make sure both your target system and emulator
power are OFF before installing the emulator probe into the target system. The
emulator may be damaged if the power is on when installing the probe.

CAUTION The emulator probe will be damaged if incorrectly installed. Make sure to align pin
A1 of the probe connector with pin A1 of the socket.

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

177

1 Remove the processor from your target system socket. Note the location of pin A1
on the processor and on the target system socket. Store the processor in a protected
environment (such as antistatic foam).

2 Insert the emulator probe into your target system socket. Make sure to align pin A1
of the emulator probe and the target system socket.

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

178

To power-on the emulator and your target system

CAUTION You must turn on power to the emulator before you turn on power to your target
system. Otherwise, the emulator may be damaged. Turn off power to the target
system before turning off power to the emulator.

1 Turn on power to the emulator.

2 Turn on power to your target system.

3 Before you turn off power to the emulator, be sure to turn off power to your target
system.

To probe target system sockets

• A flexible adapter is available from Hewlett-Packard for special target system
probing needs. It is listed in the following table:

Probe type HP part number

68040 PGA to PGA flexible adapter E3429A

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

179

Using The Emulator With MMU Enabled

When you enable memory management in the MC68040 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The remaining pages in
this chapter will help you when you are using the MC68040 emulator with the
MMU enabled. Chapter 10, "Using Memory Management", provides detailed
information to help you use the MC68040 MMU most efficiently.

Disable the MMU unless you are using it for address translation. You will still be
able to use the transparent translation registers for such tasks as defining cache
modes.

To enable the processor memory management
unit

In order to use the MC68040 MMU to provide logical-to-physical address
translation, the MMU must be enabled within the emulator configuration and the
target system must deassert the MDIS signal (MMU Disable). If the MMU is not
enabled within the emulator configuration, the emulator asserts the MDIS signal
and ignores the MDIS signal from the target system, thus preventing the target
system from using the MMU. If you are using the background monitor, you will
need to select a foreground monitor before the MMU can be enabled within the
emulator configuration. Refer to the chapter titled "Configuring the Emulator" for
details of setting up the emulator configuration.

Once the MDIS signal is driven properly, the target system software is responsible
for setting up address translation tables in memory and initializing the processor’s
MMU registers at run time. This task is typically managed by the target system’s
boot code or operating system. Refer to your Motorola 68040 User’s Manual for
information on how to use the MMU.

If the emulator is being used in an MC68EC040 target system, or if the MMU is
not needed for translating page addresses from address translation tables in
memory, then you should disable the MMU within the emulator configuration.
This causes the emulator to assert the MDIS signal. However, the assertion of this

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

180

signal does not affect the operation of the transparent translation or access control
registers.

To view the present logical-to-physical mappings

• Choose Display→MMU Translations. If you want to specify a logical address
range for your mappings display, choose Display→MMU Translations... Then in
the dialog box, click on MMU Mappings , and enter the desired logical address
range.

• Using the command line, enter the command:

display mmu_translations

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

Examples To see the logical-to-physical mappings using the default range of logical addresses
(initially 0 through 0ffffffffh), choose Display→MMU Translations , or on the
command line, enter:

display mmu_translations

To see all of the logical-to-physical mappings for logical addresses from 0 through
0ffffh (when only the URP root pointer is enabled), choose Display→MMU
Translations.... Then in the dialog box, click on MMU Mappings , and enter Start
Address 0 and End Address 0ffffh, and click ok.

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

181

Using the command line, enter:

display mmu_translations 0 thru 0ffffh

To see the logical-to-physical mappings for the pages that contain logical address
40f0h, enter the command:

display mmu_translations 40f0h

To see only the mappings in supervisor space in the address range from 0 through
0ffffh, enter the command:

display mmu_translations fcode super 0 thru 0ffffh

To see only the mappings in user space in the address range from 0 through 0ffffh,
enter the command:

display mmu_translations fcode user 0 thru 0ffffh

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

182

To show all of the valid mappings using the register overload capability of the
command, enter a command to disable the MMU, and then enable it in your
command, such as:

modify register MMU TC to 0
display mmu_translations use_value TC 8000h

To see translation details for a single logical
address

• Choose Display→MMU Translations... Then in the dialog box, click on MMU
Tables, and enter the Logical Address whose table details you want to see in the
Address box, and click ok.

• Using the command line, enter the command:

display mmu_translations tables <address>

Examples To see how logical address 40f0h is mapped through the translation tables to its
corresponding physical address, choose Display→MMU Translations... Then in
the dialog box, click on MMU Tables, enter 40f0h in the Address box, and click ok.

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

183

Using the command line, enter:

display mmu_translations tables 40f0h

To see how logical address 1000h in user space is mapped through the translation
tables to its corresponding physical address, choose Display→MMU
Translations... Then in the dialog box, click on MMU Tables, enter 1000h in the
Address box, click on the pushbutton beside Function Code and select user from
the submenu, and click ok.

Using the command line, enter:

display mmu_translations tables fcode user 1000h

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

184

To see details of a translation table used to map
a selected logical address

• Choose Display→MMU Translations... Then in the dialog box, click on MMU
Tables, and enter the Logical Address whose translation table you want to see in
the Address box. Finally, beside Table Level, click on the pushbutton to identify
the table you want to see, and then click ok.

• Using the command line, enter the command:

display mmu_translations tables <address> level
<table_level>

Where <table_level> is the table level you want to see (either A, B, or C), and
<address> is the logical address that uses the table at the point to be shown.

Note that table level all is also offered. If you select all, you will see the translation
details for your logical address through the tables. This is the same as if you had
not selected the level <table_level> option.

Table A may be accessed at several different base addresses, depending on which
logical address is to be translated. This command ensures you see Table A where
you want to see it.

Examples To see the details of Table A used to map logical address 1250h, choose
Display→MMU Translations... Then in the dialog box, click on MMU Tables,
and enter 1250h in the Address box. Finally, beside Table Level, click on the
pushbutton to select A, and then click ok.

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

185

Using the command line, enter:

display mmu_translations tables 1250h level A

Chapter 4: Using the Emulator
Using The Emulator With MMU Enabled

186

Using an FPU with an MC68EC040 or MC68LC040
Target System

The MC68EC040 and MC68LC040 processors do not have an on-chip FPU. When
floating-point functionality is required, all floating-point operations must be
implemented in software using integer instructions. Language systems usually
provide a floating-point software library for this purpose.

The HP 64783A/B emulator uses an MC68040 processor with an on-chip FPU.
Because there is no way to disable the FPU, floating-point operations may execute
differently, depending on the language system used. If your language system
generates calls directly to the floating-point software library and does not emit any
opcodes for floating-point instructions, then there should be no difference in
floating-point operations whether you are using the emulator or the
MC68EC040/LC040 processor plugged into your target system.

If your language system emits opcodes for floating-point instructions and relies on
an F-Line exception handler to call the floating-point software library when the
instruction is executed, then your target system will operate differently when the
emulator is plugged in. When using the emulator, most floating-point instructions
will be executed on the FPU in hardware instead of generating an F-Line exception
and allowing the floating-point operations to be implemented in software. For this
scenario, the following three points should be taken into consideration:

• Floating-point software libraries cannot be tested while the emulator is plugged
in. Floating-point instructions are always executed on-chip, not by your
floating-point libraries. This will definitely cause a problem for anyone trying
to develop floating-point software libraries.

• Target programs containing FPU instructions will run faster when the emulator
is plugged into the target system because they are executed in the hardware of
the MC68040 instead of by the floating-point software libraries, as they will be
when the MC68EC040/LC040 processor is plugged in. This will cause
performance measurements to show much better results when using the
emulator than you will actually obtain when you use the MC68EC040/LC040
processor.

• If you are unaware that your language tools use floating-point instructions (and
you do not actively provide floating-point libraries and F-Line exception
handling), you may find that your target system does not work when you
unplug the emulator and plug in your MC68EC040/LC040 target processor.

Chapter 4: Using the Emulator
Using an FPU with an MC68EC040 or MC68LC040 Target System

187

Using M68040 support for the M68360
Companion Mode

Many designers need development tools for Motorola’s M68360 processor.
However, designers of higher performance systems will need to achieve a greater
level of throughput than the 5 MIPS CPU32+ processor on board the M68360 can
provide. These designers will consider using the M68360 Companion Mode
together with a 22 MIPS M68040 "master" CPU.

This section shows you how to:

• set up a custom arrangement of action keys on the Graphical User Interface to
operate the M68040/M68360 in the Companion Mode.

• use the custom action keys to develop products that use the M68040/M68360
Companion Mode. Through the action keys, you can perform such actions as
viewing registers, configuring registers, developing boot code, and running
programs.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

188

To set up custom M68040 Action Keys to support
the M68360 Companion Mode

The following paragraphs show you how to set up a custom ararngement of
M68040 Action Keys in the Graphical User Interface to support the M68360
Companion Mode. Refer to Chapter 13 "Setting X Resources", and to the
discussion in online file $HP64000/lib/X11/app-defaults/HP64_Softkey for
details of how action keys are configured, formatted, and used within the Graphical
User Interface.

1 Find the Motorola 68040 family-specific Application Resources in your
HP64_Softkey file in your $HP64000/lib/X11/app-defaults directory. This
portion of the file sets up the standard arrangement of action keys in the 68040
Graphical User Interface. It will be similar to the following example.

!--! Action
! Action Key Definitions (See also XcHotkey discussion above)
*m68040*actionKeys.packing: PACK_COLUMN
*m68040*actionKeys.numColumns: 2
*m68040*actionKeysSub.keyDefs: \
 " Demo " "!telldemoHP 64783DEMO! in_browser" \
 "Disp Src ()" "display memory () mnemonic" \
 "Trace ()" "trace about (); display trace" \
 "Run" "run" \
 "Step Source" "step source" \
 " Your Key " "!tellkeysHP! in_browser" \
 "Make" "!make! in_browser" \
 "Disp Src Prev" "display memory mnemonic previous_display" \
 "Run Xfer til ()" "run from transfer_address until ()" \
 "Break" "break" \
 "Step Asm" "step"
!--

One way to access the HP64_Softkey file is to choose the File→Edit→File
pulldown in the Graphical User Interface, and in the file selection dialog box,
select $HP64000/lib/X11/app-defaults/HP64_Softkey .

2 Copy the $HP64000/lib/X11/app-defaults/HP64_Softkey file to a temporary
filename within your home directory. Name it "MyActKeys.tmp". Then edit
the temporary file to delete all lines except those that define the present setup
of action keys in your interface. See above.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

189

3 Now change directories to $HP64000/inst/emul/64783A/compmode, and
view the file ACTION040360 on your screen.

$ cat ACTION040360
emul.m68040*browseSub.enableEnhancements: True
emul.m68040*browse_popup.title:Browser Window
emul.m68040*actionKeys.packing: PACK_COLUMN
emul.m68040*actionKeys.numColumns: 3
emul.m68040*actionKeysSub.keyDefs: \
 "COMPANION" "help68360register2" \
 "MODE KEYS" "help68360register2" \
 "Gen Boot Code" "boot68360sim" \
 "Help Reg ()" "help68360register1 ()" \
 "Help 360" "help68360register" \
 "Pick Util" "utils68360chip" \
 "Pick Reg 360" "display68360reglist" \
 "Pick Chip 360" "select68360chip" \
 "Reg 360 All" "display68360registers" \
 "Mod 360 ()" "modify68360register ()" \
 "Reg 360 ()" "display68360register ()" \
 "Run Util ()" "()" \
 "Disp Mod 1/0" "display68360aftmod" \
 "Set Chip ()" "set68360chip ()" \
 "PRBD 360 All" "display68360prbds" \
 "Mod Memory" "modify68360memory" \
 "PRBD 360 ()" "display68360prbd ()"

The file ACTION040360 contains the special action keys that support the M68360
Companion Mode in the M68040 emulator. It is set up to arrange the action keys
in three rows across the M68040 interface (note .numColumns: 3 in the file
listing).

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

190

4 Add the Companion Mode action keys from file
$HP64000/inst/emul/64783A/compmode/ACTION040360 to the normal
action keys contained in your file "MyActKeys.tmp". Save this file.

5 Edit your "MyActKeys.tmp" file to add a blank action key with a
nondestructive action string before the first Companion Mode action key
("COMPANION") in order to obtain a balanced arrangement of action keys
across the interface, and to change the number of action key rows to five
(indicated by .numColumns: 5). When the edit is complete, your file should
appear as follows:

Note All three of the action strings that call the "help68360register2" command file
are visual placeholders. You can customize this file by replacing these two
action strings with any other action strings desired.

!--

! Action Key Definitions (See also XcHotkey discussion above)
emul.m68040*browseSub.enableEnhancements: True
emul.m68040*browse_popup.title:Browser Window
emul.m68040*actionKeys.packing: PACK_COLUMN
emul.m68040*actionKeys.numColumns: 5
emul.m68040*actionKeysSub.keyDefs: \
 " Demo " "!telldemoHP 64783DEMO! in_browser" \
 "Disp Src ()" "display memory () mnemonic" \
 "Trace ()" "trace about (); display trace" \
 "Run" "run" \
 "Step Source" "step source" \
 " Your Key " "!tellkeysHP! in_browser" \
 "Make" "!make! in_browser" \
 "Disp Src Prev" "display memory mnemonic previous_display" \
 "Run Xfer til ()" "run from transfer_address until ()" \
 "Break" "break" \
 "Step Asm" "step" \
 " " "help68360register2" \
 "COMPANION" "help68360register2" \
 "MODE KEYS" "help68360register2" \
 "Gen Boot Code" "boot68360sim" \
 "Help Reg ()" "help68360register1 ()" \
 "Help 360" "help68360register" \
 "Pick Util" "utils68360chip" \
 "Pick Reg 360" "display68360reglist" \
 "Pick Chip 360" "select68360chip" \
 "Reg 360 All" "display68360registers" \
 "Mod 360 ()" "modify68360register ()" \
 "Reg 360 ()" "display68360register ()" \
 "Run Util ()" "()" \
 "Disp Mod 1/0" "display68360aftmod" \
 "Set Chip ()" "set68360chip ()" \
 "PRBD 360 All" "display68360prbds" \
 "Mod Memory" "modify68360memory" \
 "PRBD 360 ()" "display68360prbd ()"

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

191

6 Add your special arrangement of action keys to your .Xdefaults file by typing
the command:

cat MyActKeys.tmp >> $HOME/.Xdefaults

7 Make sure you export your ".Xdefaults" file so that it will be read when the
M68040 interface starts. Use the following command:

export XENVIRONMENT=$HOME/.Xdefaults

8 Start your M68040 Graphical User Interface and see your special arrangement
of action keys using your normal emul700 ... command. Your interface should
have five rows of action keys, the last three rows being the M68040 Action
Keys that support the M68360 Companion Mode. See below.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

192

9 Press the Action Key labeled "Help 360". A window will open, providing
general information to help you get started using the M68360 Companion
Mode through the M68040 Action Keys. See below:

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

193

Tasks you may wish to perform when using the
M68040/M68360 companion Mode

The following paragraphs show you how to perform typical development
operations supported in the action keys of the M68040 Graphical User Interface.
For further details, refer to the help screen available by pressing the "Help 360"
Action Key.

• To obtain a record of the present contents of all SIM60 and CPM registers in
one listing, press the "Reg 360 All" Action Key.

• To view the contents of a single SIM60 or CPM register, press the "Pick Reg
360" Action Key. Within the appropriate browser window, click on the name
of the register to be displayed. Then press the "Reg 360 ()" Action Key.

• To modify the content of a SIM60 or CPM register, press the "Pick Reg 360"
Action Key. Within the appropriate browser window, click on the name of the
register to be modified. Then press the "Mod 360 ()" Action Key. Type the
desired value in the Define command file parameter dialog box and click OK.

• To obtain a record of the present content of all parameter RAMs and Buffer
Descriptors in one browser, press the "PRBD 360 All" Action Key.

• To view the contents of a single Parameter RAM and its associated Buffer
Descriptors, place the name of the desired channel in the entry buffer and press
the "PRBD 360 ()" Action Key.

• To modify the contents of a Parameter RAM or Buffer Descriptor, press the
"Mod Memory" Action Key. The Define command file parameter dialog box
will appear three times. In the first appearance, enter the desired address; next,
enter size; and finally, enter value. Click OK after each entry.

• To select the M68360 slave module whose registers will be viewed through the
M68040 interface, press the "Pick Chip 360" Action Key. In the appropriate
browser window, click on the name of the desired M68360 slave module, and
click Done. Then press the "Set Chip ()" Action Key.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

194

• To assign a new base address to contain the register set of an M68360 chip,
press the "Pick Util" Action Key. In the browser window, highlight
assign68360chip, and click Done. Press the "Run Util()" Action Key. Type
the new base address in the Define command file parameter dialog box, and
click OK.

• To save peripheral register settings to a file. Press the "Pick Util" Action Key.
In the browser window, highlight save68360registers and click Done. Press
the "Run Util()" Action Key. Type the desired directory/filename to contain
register values in the Define command file parameter dialog box, and click OK.

• To restore peripheral register settings to files, Press the "Pick Util" Action Key.
In the browser window, highlight load68360registers and click Done. Press
the "Run Util()" Action Key. Type the name of the directory/filename that
contains the desired register values into the Define command file parameter
dialog box, and click OK.

• To remove all temporary files that have been created during the development
session, press the "Pick Util" Action Key. In the browser window, highlight
clean68360util and click Done. Press the "Run Util()" Action Key.

• To generate boot code for configuring the SIM60 unit, press the "Gen Boot
Code" Action Key. When the boot code browser window opens, press the
Save to File... pushbutton and enter the name of the file to contain the
generated boot code; then click OK. Assemble and link the file of generated
boot code with your code.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

195

For more information

• General information about using the Action Key solution to the M68040/M68360
Companion Mode is available by pressing the "Help 360" Action Key.

• Detailed information for configuring a particular SIM60 or CPM register can be
obtained by placing the name of the register in the entry field and pressing the
"Help Reg ()" Action Key.

• Help for understanding how action keys work in the Graphical User Interface is
available in Chapter 13, "Setting X Resources", and in the online file named
$HP64000/lib/X11/app-defaults/HP64_Softkey, under the discussion called
XcHotkey:Action Keys.

Chapter 4: Using the Emulator
Using M68040 support for the M68360 Companion Mode

196

5

Using the Emulation-Bus Analyzer

How to record program execution in real-time

197

Power of the Emulation-Bus Analyzer

The emulation-bus analyzer is a powerful tool that allows you to view the
execution of your program in real-time. Extensive triggering and sequencing
capability ensures that the analyzer captures only the information you need so you
don’t spend time searching through long trace lists to find the information that is of
interest.

The Graphical User Interface has menus that let you specify some simple analyzer
measurements like tracing after, about, or before an address. You can also specify
qualifications for which states get stored and which states can be prestored; the
analyzer can prestore up to two states before each qualified store state.

The analyzer has much more capability than is available in the menus. You can
access this capability by using the command line to make your trace specifications.
Use of the command line is also covered in this chapter.

Once a trace specification command is entered, either with the menus or the
command line, it can be recalled, edited if desired, and executed again. Also, trace
specifications and trace data can be stored to files and loaded from files.

Chapter 5: Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer

198

Making Simple Trace Measurements

You can make simple records of the processor’s bus activity using just a few
analyzer commands. When you set up the analyzer to record processor bus activity,
you are preparing to make a trace measurement. During the trace measurement, the
analyzer saves a record of the bus activity in trace memory. The display of the
trace memory content is called the trace list.

The information captured at the occurrence of each clock is called a state. When a
captured state matches your specification for the trigger state, the analyzer
identifies it as the trigger state and stores it in trace memory.

The default specification for the trigger state is "any state." When you start a trace
measurement using the default trace specification, the analyzer will identify the first
state it captures as the trigger state and fill the remaining space in the trace memory
with the states that follow it. A trace is said to be complete when the trace memory
is filled with captured states, and the trigger state resides at its specified point in the
trace memory (the first state captured in memory, by default).

When a trace measurement is started, you can view the progress of the
measurement by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn’t filled its trace memory, the trace measurement does not complete.
In these situations, you can halt the trace measurement.

Once a trace is displayed, you can use the cursor keys and other keyboard keys to
position the trace list on screen. To speed up the display of traces, you can reduce
the depth of the trace list. Also, when entering trace commands, you can recall and
modify preceding trace commands to speed command entry.

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

199

To start a trace measurement

• Choose Trace→Everything.

• Using the command line, enter:

trace

When you use the trace command without any options, the analyzer begins
recording processor bus cycles immediately, and continues until the trace buffer is
filled. In the default trace configuration, the analyzer stores all bus cycles.

If you are using the deep analyzer, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to Chapter 19, "Installation and
Service", for details. If you are using the 1K analyzer, the trace list buffer is 512 or
1024 states deep (depending on whether or not you turn on the state/time count).
See "To count states or time" in this chapter.)

Example Start the demo program and trace from the program start:

Startemul
reset
trace
run from transfer_address

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

200

To stop a trace measurement

• Choose Trace→Stop.

• Using the command line, enter:

stop_trace

You must use this command to stop a trace started with a Trace→Until Stop
command (refer to "To trace activity leading up to a program halt" later in this
chapter). Several other conditions may occur that will make you want to stop a
trace. The analyzer may not record any trace states because your trigger
specification isn’t correct, or because you have a target system problem. At other
times, a valid trace may be capturing data slowly. You can use the stop_trace
command to prevent the analyzer from storing additional data.

You do not have to stop a trace in order to begin viewing a partial trace because the
interface supports incremental trace uploading. After the trigger condition occurs,
the interface begins uploading and displaying trace states as they are captured.

To display the trace list

• Choose Trace→Display.

• Choose Display→Trace.

• Using the command line, enter:

display trace

When you complete a trace measurement, you will want to see the results. The
display trace command shows you the current trace list. The trace display is
updated each time you enter a new trace command, until you display some other

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

201

data using the display command. (See the set update command in “Emulator
Commands” for details.)

Whether source lines, disassembled trace states, or symbols are included in the
display depends on the modes you choose with the
Settings→Source/Symbols Modes or Settings→Display Modes pulldown menu
items.

Example A simple trace list resembles:

M68040 Sat Feb 20 12:16:02 1993

Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 00003348 51FC137C TRAPF
 =0000334A MOVE.B #$01,($001A,A1)
+001 0000334C 0001001A $0001001A sprog long read
+002 0007879F 00000001 $------01 sdata byte write
+003 00003350 528551FC ADDQ.L #1,D5
 =00003352 TRAPF
+004 00003354 BA866DEA CMP.L D6,D5
 =00003356 BLT.B $00003342
+005 0007879E 00000100 $----01-- sdata byte write
+006 00003358 51FCB254 TRAPF
 =0000335A CMP.W (A4),D1
+007 0000335C 6E0E137C BGT.B $0000336C
 =0000335E MOVE.B #$01,($001C,A1)
+008 00003360 0001001C $0001001C sprog long read
+009 00003364 021300FD ANDI.B #$FD,(A3)

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

202

To display the trace status

• Choose Display→Status.

• Using the command line, display the trace status with the display status command.

When you complete a trace measurement, you’ll want to see the results.

The commands above show the current emulator and analyzer status. The analyzer
status shows:

• whether the trace has completed (trace memory is full)
• analyzer arm condition
• whether the trigger has been found
• number of states captured
• current sequencer state and occurrence count

Example In the following example trace status display, the screen shows that the emulation
trace has completed, an analyzer arm (a condition to activate the analyzer) was not
defined for this measurement, the analyzer trigger was captured in memory before
the analyzer trace completed, 1024 trace states were captured (1023 states plus the
trigger state), and one analyzer sequence term was needed to satisfy the analyzer
trigger.

M68040 Sat Feb 20 12:20:40 1993

Status

Emulator Status

 M68040--Running user program

Trace Status

 Emulation trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) 0..1023
 Sequence term 2
 Occurrence left 1

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

203

To change the trace depth

• Choose Trace→Display Options... and in the dialog box, enter the desired trace
unload depth in the field beside Unload Depth. Then click the OK or Apply
pushbutton.

• Using the command line, enter:

display trace depth <depth>

Using one of the above command forms, you specify the number of states that will
be unloaded for display, copy, or file storage. By reducing the trace unload depth,
you shorten the time it takes for the interface to unload the trace information. You
can increase the trace unload depth to view more states of the current trace.
Regardless of how much or how little unload depth you specify, the entire trace
memory will be filled with captured states during a trace.

In the deep analyzer, the maximum number of trace states depends on whether or
not you installed memory modules in the analyzer card, and the capacity of the
memory modules. Refer to Chapter 19, "Installation and Service", for details. In
the 1K analyzer, the maximum number of trace states is 1024 when counting is
turned off, and 512 otherwise. In either analyzer, the minimum trace depth is 9.

Trace data must be unloaded before it can be displayed, copied, or stored in a file.
If you wish to reduce the number of states that are unloaded for display, you must
enter the unload depth specification (in one of the two ways shown above) before
you enter the trace command. The above commands cannot be used to reduce the
number of states displayed in the current trace. You can enter a new unload depth
specification after a trace is complete to increase the amount of trace memory that
is unloaded, if desired.

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

204

To modify the last trace command entered

• Choose Trace→Trace Spec and use the dialog box to select and edit a trace
command.

• Using the command line, enter:

trace modify_command

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see Chapter 13, "Setting X Resources").

The trace modify_command command recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command; also,
the last trace command is always available, no matter how many commands have
since been entered.

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

205

To define a simple trigger qualifier

• Enter your trigger qualifier (such as, address 1000h) in the entry buffer. Then in
the menu bar, click on: Trace→After() , Trace→Before(), or Trace→About().

• When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as a trigger, press and hold the select mouse
button, and choose Trace After, Trace Before, or Trace About from the popup
menu.

• Using the command line, use the trace command to specify a trigger.

The default option for the analyzer is to begin to fill trace memory immediately
after the start of the trace. The trace completes when trace memory is full and the
trigger has been captured.

The trigger is a reference event in a trace list. You select trigger position to see
activity leading up to the trigger event, or following the trigger event, or both.

Example To trigger a trace measurement after the demo program executes the Init_system
procedure, place init_system in the entry buffer and choose Trace→After() , or on
the command line, enter:

trace after long_aligned init_system

The “long_aligned” option ensures that if the address of the trigger event is not on a
long word boundary, the analyzer will still be able to recognize it.

To capture a trace leading up to the address of gen_ascii_data, and then break to
the monitor when that trigger event occurs, place gen_ascii_data in the entry buffer
and choose Trace→Until() , or on the command line, enter:

trace before long_aligned gen_ascii_data
break_on_trigger

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

206

To capture a trace of activity both preceding and following the write_hdwr symbol
in the update_sys module, place update_sys.write_hdwr in the entry buffer and
choose Trace→About(), or on the commad line, enter:

trace about long_aligned update_sys.write_hdwr

To specify a trigger and set the trigger position

• Place the trigger specification desired (such as address 1000h) in the entry buffer,
and then choose Trace→After() , Trace→Before(), or Trace→About().

• When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as the trigger, press and hold the select mouse
button, and choose Trace After, Trace Before, or Trace About from the popup
menu.

• Using the command line, select trace after, trace before, or trace about to set the
trigger position.

Normally the analyzer begins to save processor activity whenever the trace is
started. By selecting trigger position, you can specify which portion of processor
activity you will view in the trace list.

The trace after command causes the analyzer to fill its trace memory with
processor activity that occurred after the trigger event.

The trace before command causes the analyzer to fill its trace memory with
processor activity that occurred before the trigger event.

The trace about command causes the analyzer to fill its trace memory with
processor activity that occurred before and after the trigger event. With this
command, the trigger event is positioned at the center of the trace.

The actual trigger position in the trace list is within +/-3 states of the position
specified.

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

207

When you enter a trace about command, the trigger state (line 0) is normally
labeled “about”. However, if there are three or fewer states before the trigger, the
trigger state is labeled “after”, and if there are three or fewer states after the trigger,
the trigger state is labeled “before”.

Example To trace on states before the demo program accesses the current humidity, enter:

trace before address current_humid status write
set symbols on
display trace

To define a simple storage qualifier

• Place your storage qualifier in the entry buffer (such as status read), and then
choose Trace→Only().

• Using the command line, use the only option in the trace command.

All captured states are stored by default. However, you can qualify which states get
stored with the only option to the trace command.

Example When you are running the demo program, to store only accesses to the address
"target_temp", place target_temp in the entry buffer, and then choose
Trace→Only(), or on the command line, enter:

trace only target_temp

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

208

Displaying the Trace List

The trace list is your view of the analyzer’s record of processor bus activity. You
can specify what is shown in the trace list to make it easier to find the information
of interest. For example, you can display symbol information where available, or
source lines from the high-level languages used to write the target system program.
You can also change the column widths and set options for disassembly of the trace
list.

This section covers many of the options available for controlling the trace display.
Display control is available through the Trace→Display Options... dialog box, the
trace list popup menu, and the command line. You can combine most options
within a single command on the command line to obtain a desired trace display. See
the display trace and set command descriptions in Chapter 11, "Emulator
Commands", for more information.

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can use source file symbols in your commands,
display source file symbols in your trace lists, or see blocks of source code
preceding related trace data. Refer to "Analyzing Program Execution when the
MMU is Enabled" later in this chapter to see how to load and use the deMMUer.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

209

Examples To use the Trace Options dialog box:

Click to select the desired
format of trace disassembly.

Click to select the way that
absolute status information is
shown in the trace list.

Click to select count
reference: Relative (to
preceding state), or Absolute
(to trigger).

Click to select trace list
dequeuing, if available for
your emulator.

Enter the desired depth of the
trace memory to be unloaded
for display or storage in a file.

Enter a value to be subtracted
from addresses and
symbol/source-line
references shown in the trace
list.

Enter the desired trace list
line number to be placed on
screen. Click OK

to specify
the trace
options and
close the
dialog box.

Click Apply
to specify
the trace
options and
leave the
dialog box
open.

Click these
pushbuttons
to select
predefined
or
previously
specified
entries.

Click this
pushbutton
to cancel
the entries
and close
the dialog
box.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

210

Examples To use the trace list popup menu:

Click to begin trace
disassembly from the
selected line, moving
that line to the top of
the display.

Click to open an edit
window into the
source file that
contains the address of
the selected line.

Click to open a display
window into memory
containing the address
of the selected line.
Note that the format of
the memory display
will be mnemonic for
addresses in the code
segment and absolute
otherwise.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

211

To disassemble the trace list

• Choose Trace→Display Options... and in the dialog box, select Data Format
Mnemonic. Then click the OK or Apply pushbutton.

• Use the mouse to place the cursor on a line in the trace list where you want
disassembly to begin. Then press the select mouse button, and click on
Disassemble From in the trace list popup menu.

• Using the command line, enter commands as follows:

• To disassemble instruction data in the trace list, enter:

display trace mnemonic

• To control where trace list disassembly starts, enter:

display trace disassemble_from_line_number <LINE #>

<LINE #> is a line number corresponding to a state in the trace list.

Disassembly of instruction data means that you will see instructions as they would
appear in an assembly language program listing. That is, instruction mnemonics
and operands are shown instead of hexadecimal instruction data.

The analyzer interface normally disassembles instruction data in the trace list.
However, if you specify absolute data display, that mode remains in effect until
you select the mnemonic option.

When you identify a particular trace list line where disassembly is to begin, be sure
to specify a line number that corresponds to an analyzer state with an opcode fetch.
The analyzer interface disassembles and displays the trace starting with the state
you specify.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

212

Examples To disassemble instruction data in the trace list starting at line 40:

Place the cursor on line 40, press the select mouse button, and click on
Disassemble From in the popup menu.

Or, using the command line, enter:

display trace disassemble_from_line_number 40

To specify trace disassembly options

• Selection of disassembly options is not supported in pulldowns of the Graphical
User Interface. By default, the Graphical User Interface selects high_word and
all_cycles. Use the command-line if you need to specify trace disassembly using
other options.

• Using the command line, enter commands as follows:

• To show only instruction cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
instructions_only

• To show all bus cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
all_cycles

• To start instruction disassembly from the upper word of the bus, enter:

display trace disassemble_from_line_number <LINE#>
high_word

• To start instruction disassembly from the lower word of the bus, enter:

display trace disassemble_from_line_number <LINE#>
low_word

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

213

Normally, the MC68040 presents the trace list data as it was stored by the analyzer.
That is, all bus cycles are shown, and disassembly starts with the most significant
word of the data.

If you don’t want to see operand cycles in the trace list, specify the
instructions_only option.

Each analyzer bus state may have two data words. An opcode can appear in either
word. You can force disassembly to begin with the lower word of the first trace
state by using the low_word option. If the disassembled trace list isn’t what you
expected, try using this option.

The disassembly options remain in effect until you specify a new disassembly
option.

Examples Show only instruction cycles in the trace list starting at line 40:

display trace disassemble_from_line_number 40
instructions_only

Show all bus cycles in the trace list:

display trace disassemble_from_line_number 40 all_cycles

Start instruction disassembly from the upper word of the bus:

display trace disassemble_from_line_number 100 high_word

Start instruction disassembly from the lower word of the bus

display trace disassemble_from_line_number 100 low_word

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

214

To specify trace dequeueing options

• Choose Trace→Display Options... and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

• Using the command line, enter commands as follows:

• To dequeue the trace list, enter:

display trace dequeue on

• To display the trace list without dequeueing, enter:

display trace dequeue off

• To tell the analyzer which data operand is aligned with the first opcode, enter:

display trace disassemble_from_line_number <LINE#>
align_data_from_line <STATE#>

<LINE #> is a line number corresponding to a state in the trace list. <STATE#> is
the line number of the data operand that is associated with the instruction at
<LINE#>.

A dequeued trace list is available through the disassembly options. In a dequeued
trace list, unused instruction prefetch cycles are discarded, and operand cycles are
placed immediately following the corresponding instruction fetch. If you choose a
non-dequeued trace list, instruction and operand fetches are shown exactly as
captured by the analyzer.

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret the data.
By specifying the first instruction state for disassembly and the number of the first
operand cycle for that instruction, you can resynchronize the disassembly. (You
may also need to use the low_word option.)

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your
dequeued trace list. TAKEN is shown beside a branch if the dequeuer determines
that the branch was taken. NOT TAKEN is shown if the dequeuer determines that
the branch was definitely not taken. ?TAKEN? means the dequeuer was not able to
determine whether or not the branch was taken. If you read down the trace list and

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

215

see that the branch was taken, use the disassemble_from_line_number command
to restart disassembly at the trace list line number of the branch destination. You
will need to include the low word option if the destination opcode is in the low
word at the destination address. You may need to resynchronize alignment of
operand cycles with the instruction at the branch address, using the
align_data_from_line option.

Examples Dequeue the trace list:

Choose Trace→Display Options... and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace dequeue on

Display the trace list without dequeueing:

display trace dequeue off

Tell the analyzer which data operand should be aligned with the first opcode:

display trace disassemble_from_line_number 40
align_data_from_line 42

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

216

To display the trace without disassembly

• Choose Trace→Display Options... and in the dialog box, select Data Format
Absolute. You can select Hex, Binary, or Mnemonic format for display of status
information. Then click the OK or Apply pushbutton.

• Using the command line, enter commands as follows:

• To display the trace list without instruction disassembly and with status
information in binary format, enter:

display trace absolute status binary

• To display the trace list without instruction disassembly and with status
information in hexadecimal format, enter:

display trace absolute status hex

• To display the trace list without instruction disassembly and with status
information in mnemonic format, enter:

display trace absolute status mnemonic

For some measurements, it may be more convenient for you to view the trace data
without instruction disassembly. The Data Format Absolute selection in the
Trace→Display Options... dialog box, or the display trace absolute command
allows you to do this. Notice that once you enter this format selection, subsequent
trace lists will displayed in this format until you select the mnemonic format with
the dialog box or display trace mnemonic command again.

You can select the display format for the status information when you choose Data
Format Absolute in the dialog box, or when you use the display trace absolute
command. The status information can be displayed in binary, hex, or as mnemonics
that indicate the nature of the current bus cycle (such as a read or write).

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

217

Examples Display the trace list without instruction disassembly and with status information in
binary format:

Choose Trace→Display Options... and in the dialog box, select Data Format
Absolute. Select Status Format Binary. Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace absolute status binary

Display the trace list without instruction disassembly and with status information in
hexadecimal format, make appropriate entries in the Trace→Display Options...
dialog box, or enter the following command:

display trace absolute status hex

Display the trace list without instruction disassembly and with status information in
mnemonic format, make appropriate entries in the Trace→Display Options...
dialog box, or enter the following command:

display trace absolute status mnemonic

To display symbols in the trace list

• Choose Settings→Source/Symbol Modes→Symbols, or choose
Settings→Display Modes ..., and in the dialog box, click on Symbolic Addresses.
In the Field Widths area of the dialog box, you can select the widths of the Label
Field and Symbols in Mnemonic Field to control the display space allocated to the
symbols. To select symbol types, use the command line, described below.

• Using the command line, enter commands as follows:

• To display symbols in the trace list, enter:

set symbols on

• To display only high level symbols, enter:

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

218

set symbols high

• To display only low level symbols, enter:

set symbols low

• To display all symbols (both high and low level), enter:

set symbols all

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can display source file symbols in your trace lists.
Refer to "Analyzing Program Execution when the MMU is Enabled" later in this
chapter to see how to load and use the deMMUer.

When you enable symbol display, addresses and operands are replaced by the
symbols that correspond to those values. The symbol information is derived from
the SRU symbol database for that command file. See Chapter 4, "Using the
Emulator", for more information on SRU and symbol handling.

High-level symbols are those that are available only from high-level languages such
as a compiler. Low-level symbols are those that are available from assembly
language modules (which may include symbols generated internally by a compiler).

The Settings→Source/Symbol Modes..., Settings→Display Modes..., or
set symbols command remains in effect until you enter a new
Settings→Source/Symbol Modes..., Settings→Display Modes..., or set symbols
command with different options.

Refer to Chapter 4, "Using the Emulator", for details of how to set up and use the
Display Modes dialog box.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

219

To display source lines in the trace list

• Choose Settings→Source/Symbol Modes→Source Mixed or
Settings→Source/Symbol Modes→Source Only .

• Choose Settings→Display Modes..., and in the dialog box, click on Source in
Trace and select either Source Mixed or Source Only from the submenu.

• Using the command line, enter commands as follows:

• To display mixed source and assembly language in the trace list, enter:

set source on

• To display only source language statements in the trace list, enter:

set source only

• To display only assembly language in the trace list, enter:

set source off

If you are using the emulator with the MMU enabled, you will need to enable and
load the deMMUer before you can display source code preceding related trace data
in your trace lists. Refer to "Analyzing Program Execution when the MMU is
Enabled" later in this chapter to see how to load and use the deMMUer.

If you developed your target programs in a high-level language such as “C,” you
can display the source code in the trace list with the corresponding assembly
language statements. Or, you can choose to display only the source listing without
the assembly language information.

The analyzer uses the line-number information in the SRU symbol database for the
absolute file to reference between source lines and assembly language information.
Refer to Chapter 4, "Using the Emulator" for more information on SRU and symbol
handling.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

220

To change the column width

• Choose Settings→Display Modes..., and select desired widths for information in
the trace list by using the dialog box. Refer to the "Examples" page under "To
display symbols in the trace list", earlier in this chapter for details of how to use the
dialog box.

• To set the column width for the address column in the trace list, enter:

set width label <WIDTH>

• To set the column width for the mnemonic column in the trace list, enter:

set width mnemonic <WIDTH>

• To set the column width for source lines in the trace list, enter:

set width source <WIDTH>

• To set the column width for the symbols column in the trace list, enter:

set width symbols <WIDTH>

<WIDTH> is an integer specifying the width of the column in characters.
(<WIDTH> is restricted to certain values which are shown if you press the
<WIDTH> softkey.)

You can display more information by widening a column or ignore the information
by narrowing the column. For example, you might want to widen the label column
so that you can see the complete names of the symbols in that column.

You can combine multiple options on the command line to set the width for several
columns at once.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

221

Example Set the width of the address label column to 30 characters and the width of the
mnemonic column to 50 characters:

set width label 30 mnemonic 50

To select the type of count information in the
trace list

• Choose Trace→Display Options... and in the dialog box, select Count Format
Relative or Absolute, as desired. Then click the OK or Apply pushbutton.

• To display count information in the trace list relative to the trigger state, enter:

display trace count absolute

• To display count information in the trace list relative to the previous trace list state,
enter:

display trace count relative

The count information in the trace list is always displayed if it is turned on. To turn
on the trace counting function, enter a command beginning with trace counting on
the command line. Refer to "To count states or time" later in this manual for details.

When using the 1K analyzer, the trace memory is 512 states deep if counting states
or time is turned on and 1024 states deep if counting is turned off. To disable
counting in the 1K analyzer, use the command trace counting off. When using the
deep analyzer, full memory depth is always available; the depth of the deep
analyzer is not affected by the counting selected. See “To count states or time.”

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

222

Examples Count time and store only each iteration of the update_sys symbol in the demo
program (if using the 1K analyzer, make sure the clock speed is set to "Slow" in the
configuration):

Specify the trace for the emulator:

trace only long_aligned update_sys counting time

(The long_aligned parameter is needed because the MC68040 fetches opcodes as
32-bit values and update_sys may not be the first part of that value.)

Now, start the program run; then display the trace:

run from transfer_address

display trace count relative

Count absolute entries into the get_targets routine of the demo program:

trace only address range update_sys thru update_sys end
counting state get_targets

run from transfer_address

display trace count absolute

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

223

To offset addresses in the trace list

• Choose Trace→Display Options... and in the dialog box, enter the desired offset
value in the field beside Address Offset. Then click the OK or Apply pushbutton.

• Use the offset_by command-line option to the display trace command.

The Address Offset or offset_by trace display options allow you to cause the
address information in the trace display to be offset by the amount specified. The
offset value is subtracted from the instruction’s physical address to yield the
address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use the Address Offset or offset_by option to change the address information so
that it again agrees with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

Example Trace execution from entry of the demo program (the main label) then offset by the
value of main so that the addresses appear the same as the location counter in the
assembler listing:

reset
trace
run from transfer_address
display trace offset_by main

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

224

To reset the trace display defaults

• Choose Settings→Display Modes... Then in the dialog box, click on Default All
Settings, and click the OK pushbutton. This leaves the trace display in the "source
intermixed and symbols on" mode.

• Using the command line, enter:

set default

This turns off all symbolics and source references in the interface.

To move through the trace list

• Use the scroll bar at the right of the display to scroll up and down. Use the arrows
at the bottom of the display (if any) to scroll left and right.

• Using the command line, enter commands as follows:

• To roll the trace display to the left, press <Ctrl>f simultaneously.

• To roll the trace display to the right, press <Ctrl>g simultaneously.

• To roll the display down one line, press the down arrow key.

• To roll the display up one line, press the up arrow key.

• To move to the previous page in the trace list, press the Pg Up or Prev key.

• To move to the next page in the trace list, press the Pg Dn or Next key.

Though the trace display is set to 256 or more states, only 15 lines may be
displayed in the interface window, depending on your terminal type. You can move
through the trace list display using various key combinations.

You can roll the display left and right only if the trace list is wider than 80 columns.
This may occur if you increased the width of the columns.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

225

To display the trace list around a specific line
number

• Choose Trace→Display Options... and in the dialog box, enter the desired trace
list line number in the field beside Move to Line. Then click the OK or Apply
pushbutton.

• Center the trace display about a particular state given by <LINE #> by entering

display trace <LINE #>

If you need to move to a particular state quickly, you can use this command. The
command places the specified state in the center of the current trace display.

Examples Display the trace about line number 20:

Choose Trace→Display Options... and in the dialog box, enter 20 in the field
beside Move to Line. Then click the OK or Apply pushbutton.

Enter the following command on the command line to display the trace about line
number 256:

display trace 256

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

226

To change the number of states available for
display

• Choose Trace→Display Options... and in the dialog box, enter the desired number
of states to be made available for display in the field beside Unload Depth. Then
click the OK or Apply pushbutton.

• Using the command line, set the depth of the trace list with:

display trace depth <DEPTH#>

<DEPTH#> is the number of states to be available in the trace list for displaying,
copying, or storing to a file. If you are using the deep analyzer, the depth of the
trace list buffer depends on whether or not you installed memory modules on the
analyzer card, and the capacity of the memory modules installed. Refer to Chapter
19, "Installation and Service", for details. If you are using the 1K analyzer, the
trace list buffer is 512 or 1024 states deep (depending on whether or not you turn
on the state/time count). See "To count states or time" in this chapter.)

When you display the trace list, the interface requests the number of states specified
by the trace depth from the emulator. If you want faster trace display, you can
decrease the trace depth. To display more states, you can increase the trace depth.
Notice that the trace depth setting only regulates the number of states sent from the
emulation-bus analyzer to the interface. You still need to use the Pg Up and Pg Dn
keys to page through the trace list.

Examples Set the depth of the trace memory to 256 states:

Choose Trace→Display Options... and in the dialog box, enter 256 in the field
beside Unload Depth. Then click the OK or Apply pushbutton.

Set the depth of the trace to 1024 states:

display trace depth 1024

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

227

To display program memory associated with a
trace list line

• Using the mouse, place the cursor on the line in the trace list where you want to see
the associated content of program memory. Then press the select mouse button,
and click on Display Memory At in the trace list popup menu.

You will see a display of memory at the location of the program that emitted the
selected trace list line. This is the same as placing the program address of the
selected trace list line in the entry buffer and choosing Display→Memory→At()
in the pulldown menus.

To open an edit window into the source file
associated with a trace list line

• Using the mouse, place the cursor on the line in the trace list whose source file you
wish to edit. Then press the select mouse button, and click on Edit Source in the
trace list popup menu.

A new window will open. It will show the source file that emitted the line you
selected in the trace list. An edit session will be in progress on the source file in the
new window. When you complete the desired edit, save the file and close the
window.

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

228

Analyzing Program Execution When The MMU Is
Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68040 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

• accept commands expressed in source file symbols.

• display trace lists with addresses expressed in source file symbols.

• display appropriate portions of source code preceding lists of trace data.

Refer to Chapter 10, "Using Memory Management", for detailed information to
help you use the deMMUer more efficiently.

To program the deMMUer in a static memory
system

1 Run your program to the point where you are sure the MMU is set up.

2 Break to the monitor program by choosing Execution→Break.

Using the command line, enter:

break

3 Choose Settings→DeMMUer→Load from Memory.

If you want the emulator to override one or more of the MMU register values with
values you specify during the load process, choose Settings→DeMMUer→Load
from Memory..., and specify the desired values in the dialog box.

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

229

To see a listing of the addresses that will be reverse translated by the DeMMUer
during the loading process, choose Settings→DeMMUer→Verbose before you
enter your DeMMUer Load command.

Note that DeMMUer Load commands automatically enable the deMMUer.

4 Using the command line, enter the following command:

 load demmuer [verbose]

Note that the load command automatically enables the deMMUer.

5 Continue execution of your target program by choosing Execution→Run→from
PC or Execution→Run→from Reset, or using the command line to enter run , or
restart the program with the command: run from reset.

To pick the place to load the deMMUer, you might set an execution breakpoint in
your code at a point where you are sure your MMU will be set up to translate the
address space you want to analyze. After the breakpoint has executed (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will have the
ability to reverse translate the physical addresses according to the MMU setup at
the time you issued the load demmuer command. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by the
setup of the MMU that existed when you issued the load demmuer command. If
context switches cause the MMU to access logical memory that was not
represented in the MMU tables when you loaded the deMMUer, incorrect logical
addresses will be provided by the deMMUer.

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

230

To store a deMMUer setup file

• Choose File→Store→DeMMUer (From MMU Tables) and enter the name to be
used for the deMMUer file in the File Selection dialog box.

• Using the command line, enter:

store demmuer <file>

The deMMUer setup file is created by the emulator as it reads the present content
of the MMU tables and creates a file of reverse translations appropriate for the
deMMUer.

To load the deMMUer from a deMMUer setup file

• Choose Settings→DeMMUer→Load from File, and enter the name of the
deMMUer file in the File Selection dialog box.

• Choose File→Load→DeMMUer , and enter the name of the deMMUer file in the
File Selection dialog box.

• Using the command line, enter:

load demmuer <file>

Files that store setup information for the deMMUer have filenames that end in
".ED".

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

231

To trace program execution in physical address
space

• Choose Settings→Demmuer→Enable to disable the deMMUer.

• Using the command line, disable the deMMUer with the command:

set demmuer off

The Settings→Demmuer→Enable command in the Graphical User Interface is a
switch that enables and disables the deMMUer.

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When The MMU Is Enabled

232

Making Complex Trace Measurements

You can have the analyzer record bus activity by simply using the trace command
without any options. But this doesn’t use the analyzer effectively for two reasons:

• the trace memory may fill before the program reaches the states of interest.

• you may have to search through a long trace list to find a few states pertinent to
your measurement problem.

The HP 64700 analyzer has trigger and sequence capabilities that help solve these
problems. These tools act as a filter for processor bus activity that allows the
analyzer to capture only the states you want to see in the measurement.

A trigger tells the analyzer to identify a certain bus state as a point of reference in
the trace of states. A sequence is a more complex specification that specifies a
series of bus states that must be found to satisfy the trigger.

This section tells you how to get the most out of the HP 64700 analyzer by using
trigger and sequence specifications. It also describes additional measurement tools
to help you get more information from the trace.

Many of the options in this section can be combined one or more times. See the
trace syntax in Chapter 11, "Emulator Commands", for more information.

Expressions are an important part of trace specifications because they specify the
numeric or logical values that the analyzer matches for trigger and storage.
Expressions are represented by the <expression> symbol in this chapter. Refer to
Chapter 11, "Emulator Commands", for specifics on expression syntax.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions that consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

B b Binary (example: 10010110b).

Q q O o Octal (example: 377o or 377q).

D d (default) Decimal (example: 2048d or 2048).

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

233

H h Hexadecimal (example: 0a7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don’t care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letters X or x. A zero must precede any numerical value
that begins with an “X”.

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function

Operators Analysis specification expressions may contain operators. All
operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

-, ~ Unary two’s complement, unary one’s complement. The
unary two’s complement operator is not allowed on
constants containing don’t care bits.

* , /, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don’t care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don’t care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

234

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&0fff00h

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation-Bus Analyzer Trace Signals

The emulation-bus analyzer has 80 channels available for capturing information: 64
of those channels are used for the instruction bus and data bus, and the remaining
16 channels monitor other processor signals or synthesized signals, and are
collectively called the status lines. You can use status values as trigger or storage
qualifiers. For example, you may want to capture processor reads to a certain
address, but not processor writes. You can use a status value to qualify only
processor read cycles to the memory location.

A number of status values have already been defined for you. They are collectively
known as the status equates and cover most common processor operations. Status
equates appear on softkeys at the appropriate time so you can include the status you
want in your command line.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

235

The following table lists the predefined status equates. The descriptions identify
the emulator status represented by the equates

68040 Equates

Name Status Value Description

ack 11xxxxxxxx1xxxxxy Acknowledge access.

alt0 10xxxxxxxx1x000xy Alternate logical function code 0.

alt3 10xxxxxxxx1x011xy Alternate logical function code 3.

alt4 10xxxxxxxx1x100xy Alternate logical function code 4.

alt7 10xxxxxxxx1x111xy Alternate logical function code 7.

burst 0xxxxx0xxxxxxxxxxy Burst cycle.

byte 0xxxxxx01xxxxxxxxy Byte transfer request (SIZ1/SIZ0=01).

cpush 0xxxxxxxxx1x000xy Data cache push access.

d_tblwk 0xxxxxxxxx1x011xy Data translation table access.

data 0xxxxxxxxx1xx01xy Data space access.

dma 0xxxxxxxxxx0xxxxxy Direct memory access.

i_tblwk 0xxxxxxxxx1x100xy Instruction translation tables access.

line 0xxxxxx11xxxxxxxxy Line transfer request (SIZ1/SIZ0=11).

logical 0xx0xxxxxxxxxxxxxy Logical memory address.

long 0xxxxxx00xxxxxxxxy Longword transfer request (SIZ1/SIZ0=00).

physical 0xx1xxxxxxxxxxxxxy Physical memory address.

prog 0xxxxxxxxx1xx10xy Program space access.

read 0xxxxxxxxxxx1xxxxy Read cycle.

retry 0xxxxxxxx00xxxxxxy Retrying a previous bus cycle.

snp_hit1 0xx01xxxxx0xxxxxy Snoop operation 1 (SC1/SC0=01)

snp_hit2 0xx10xxxxx0xxxxxy Snoop operation 2 (SC1/SC0=10)

snp_inhb 0xx00xxxxx0xxxxxy Snooping inhibited.

snp_miss 0xx11xxxxx0xxxxxy Snoop miss.

sup 0xxxxxxxxx1x1xxxy Supervisor space.

supdata 0xxxxxxxxx1x101xy Supervisor data space.

supprog 0xxxxxxxxx1x110xy Supervisor program space.

ta 0xxxxxxxx10xxxxxxy Transfer acknowledge.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

236

tea 0xxxxxxxx01xxxxxxy Transfer error acknowledge.

upa0 0xx00xxxxxxxxxxy User prog attributes UPA[1:0]=00.

upa1 0xx01xxxxxxxxxxy User prog attributes UPA[1:0]=01.

upa2 0xx10xxxxxxxxxxy User prog attributes UPA[1:0]=10.

upa3 0xx11xxxxxxxxxxy User prog attributes UPA[1:0]=11.

user 0xxxxxxxxx1x0xxxy User space.

userdata 0xxxxxxxxx1x001xy User data space.

userprog 0xxxxxxxxx1x010xy User program space.

word 0xxxxxx10xxxxxxxxy Word transfer request (SIZ1/SIZ0=10).

write 0xxxxxxxxxxx0xxxxy Write cycle.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

237

To use address, data, and status values in trace
expressions

• Enter the value(s) desired in the entry buffer (such as address 1000h). Then
Choose Trace→After(), Trace→Before(), or Trace→About(), as desired.

• Using the command line, enter commands as follows:

• To specify an address expression, enter:

<expression> -or- address <expression>

• To specify a data expression, enter:

data <expression>

• To specify a status expression, enter:

status <expression>

Many trace commands require that you enter address, data and status expressions to
specify the bus state. You can combine multiple expressions on the same command
line to build a complete bus state qualifier. You can also use logical operators to
build more complex states. Refer to Chapter 11, "Emulator Commands", for details.

The default expression type is address, therefore you don’t need to specify the
address keyword when you enter an address expression.

Example Start a trace and store only writes of 0 hex to the graph address in the demo
program:

trace only graph data 0 status write

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

238

To enter a range in a trace expression

• Use the command-line rules (described below) to create your expression in the
entry buffer. Then Choose Trace→After(), Trace→Before(), or Trace→About(),
as desired.

• Using the command line, enter commands as follows:

• To specify an address range enter:

address range <expression> thru <expression>

• To specify a data range, enter:

data range <expression> thru <expression>

• To specify a status range enter:

status range <expression> thru <expression>

• To take the logical not of a range, use the not keyword before the range
keyword.

Ranges allow you to qualify analyzer actions on a contiguous set of values. Mostly,
you’ll use address ranges to trigger or store on access to a data block such as a
lookup table. But, you can also use data ranges to qualify a trigger or storage on a
range of data values.

There is only one range term available in the trace specification. Once it has been
used, it cannot be reused. That is, if you specify a range in a trigger specification,
you can’t duplicate it in the storage specification. (The Terminal Interface does
allow this type of measurement, though there is still only one range term. See the
MC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s Guide.)

Since address is the default range type, you can omit the address keyword. You
can’t omit the data or status keywords if those are the bus parts you want to
qualify.

You can use the logical or operator to combine the range term with several state
qualifiers. See the examples.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

239

Examples Store only the accesses to the demo program’s current_humid location:

trace only range current_humid thru +1h

Store only bus cycles where data is in the range 6h..26h or is 29h:

trace only data range 6h thru 26h or data 29h

To use the sequencer

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, specify a trace sequence by entering:

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

The trace sequencer allows you to specify up to seven sequence terms (including
the trigger) that must be satisfied to trigger the analyzer. If you use the windowing
specification, the sequence specification is limited to four sequence terms.

Example Use the analyzer sequencer to trigger after finding a series of events:

trace find_sequence main then update_sys.get_targets
trigger after proc_spec

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

240

To specify a restart term

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, restart the search for the trace sequence terms by
including the restart parameter in

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] restart <bus_state>
trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times the selected bus state must occur to satisfy the qualifier.

The restart qualifier allows you to restart the trace sequence whenever a certain
instruction or data access occurs. For example, you might have a complicated trace
sequence that searches for an intermittent failure condition. You could set the
restart term to restart the sequence whenever a bus cycle occurred that ensures that
the code segment would perform correctly. Thus, the trace will be satisfied only
when that restart term never occurs and the code segment fails.

Example Use the analyzer sequencer to trace a series of events and then restart the sequencer
if the restart term is found while searching for the events:

trace find_sequence update_sys.get_targets then
update_sys.write_hdwr restart update_sys.set_outputs
trigger after current_humid

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

241

To specify trace windowing

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• To trace only the states occurring after a particular bus cycle, enter:

trace enable <bus_state>

• To trace only the states occurring between two particular bus cycles, enter:

trace enable <bus_state> disable <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the windowing qualifier.

The trace window specification makes it easy to trace only the occurrences of a
particular routine. This is especially useful in high-level languages, where storing
only the accesses to a particular address range may miss several function calls
within the routine.

Examples Trace states occurring after the start of the example program:

trace enable main

Trace states occurring between the start of the example program and the call to the
message interpreter:

trace enable main disable proc_spec

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

242

To specify both sequencing and windowing

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• Specify a trace sequence that starts with a window and ends with a trigger by
entering:

trace enable <bus_state> disable <bus_state>
find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

You can use the sequencing and windowing specifications together to make
specification of complex qualifiers easier. If you use the windowing specification,
the sequence specification is limited to four sequence terms. Also, note that when
you use a windowing specification, you cannot use a restart term with your
sequence specification.

Example Use the analyzer sequencer to trace states occurring between the start of the
example program and the call to the message interpreter, then trigger after access to
the variable that stores the value of current humidity, but only if it is accessed after
a specific series of events:

trace enable main disable proc_spec find_sequence
update_sys.get_targets then long_aligned
update_sys.write_hdwr trigger after current_humid

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

243

To count states or time

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• To count occurrences of a particular bus state in the trace, enter:

trace counting <bus_state>

<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the trigger qualifier.

• To count all states in the trace, enter:

trace counting anystate

• To count time in the trace, enter:

trace counting time

• To disable counting in the trace, enter:

trace counting off

You can use the analyzer’s state/time counter to count time or bus states. If using
the deep analyzer, counting imposes no restrictions on memory depth. If using the
1K analyzer, use of the counter restricts the trace memory to a maximum depth of
512 states. If you disable the counter in the 1K analyzer, using the trace counting
off command, maximum trace depth is 1024 states.

When using the 1K analyzer, the MC68040 emulator defaults to counting off. To
count states or time, you must configure the analyzer clocks correctly. See "To
configure the analyzer clock" in Chapter 8, "Configuring the Emulator", for more
information.

Use the display trace count command to determine how the count is displayed in
the trace list. See “To display count information in the trace” for more information.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

244

Examples To count occurrences of a particular bus state in the trace (this requires the 1K
analyzer speed to be set to "Slow" in configuration):

trace counting address 10h

Count all states in the trace:

trace counting anystate

Count time in the trace:

trace counting time

Disable counting in the trace:

trace counting off

To define a storage qualifier

• Enter the storage qualifier (such as status read) in the entry buffer. Then
chooseTrace→Only().

• Using the command line, store only certain states in the trace list by entering:

trace only <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the storage qualifier.

Storage qualifiers can help filter unwanted information from program execution
and improve your trace measurement. The analyzer stores only the information
specified in the storage qualifier. Note that if you have a sequencer or trigger
specification, any states given there are shown in the trace list even if they don’t
meet the storage qualifier.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

245

Examples Trace only address 10h:

trace only address 10h

Trace only data value 0ffh:

trace only data 0ffh

Trace only write operations

trace only status write

To define a prestore qualifier

• Place your prestore qualification into the entry buffer. Then choose
Trace→Only() Prestore.

• Using the command line, enter commands as follows:

• Specify a prestore qualifier by entering:

trace prestore <bus_state>

<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the prestore qualifier.

• Disable prestore qualification by entering:

trace prestore anything

You use the prestore qualifier to save states that are related to other routines that
you’re tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You can specify calls be prestored and that entries to the
subprogram be stored. The easiest way to do this is to prestore program reads that
are outside the address range of the subprogram being called.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

246

You may have several program modules that write to a variable, and sometime
during execution of your program, that variable gets bad data writen to it. Using a
prestore measurement, you can find out which module is writing the bad data.
Store-qualify writes to the variable, and use prestore to capture the instructions that
caused those writes to occur (perhaps by prestoring program reads).

Examples Specify a prestore qualifier:

trace prestore address not range gen_ascii_data thru
gen_ascii_data end status prog and read only
long_aligned gen_ascii_data

Disable prestore qualification:

trace prestore anything

To trace activity leading up to a program halt

• Choose Trace→Until Stop.

• Using the command line, trace on a program halt by entering:

trace on_halt

The above commands cause the analyzer to continuously fill the trace buffer until
you issue a Trace→Stop or stop_trace command.

Sometimes you may have a program failure that can’t be attributed to a specific
trigger condition. For example, the emulator may access guarded memory and
break to the monitor. You want to trace the events leading up to the guarded
memory access but you don’t know what to specify for a trigger. Use the above
command. The analyzer will capture and record states until the break occurs. The
trace list will display the last processor states leading up to the break condition.

Note that the "trace until stop" command may not capture the desired information
when you are using a foreground monitor (unless the code that causes the break

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

247

also causes the processor to halt) because the analyzer will continue to capture
foreground monitor states after the break. When using a foreground monitor, you
can use the command line to enter a trace command that stores only states outside
the range of the foreground monitor program (for example, trace on_halt only not
range <mon_start_addr> thru <mon_end_addr> on_halt).

To modify the trace specification

• Choose Trace→Trace Spec... You can recall, modify, and enter your trace
specification in the dialog box.

• Using the command line, enter:

trace modify_command

Then use the command line editing features to change the trace command
specifications.

If you made an error in a trace command or want to change the measurement results
slightly, it’s often easier to recall the previous trace command and edit it than it is
to enter a new trace command. The Trace Specification Selection dialog box lets
you recall, edit, and enter trace commands that have been executed during the
emulation session or trace commands that have been predefined.

Predefine entries for the Trace Specification Selection dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources").

See the "To use dialog boxes" description in Chapter 3, "Using the
Emulator/Analyzer Interface", for information about using selection dialog boxes.

Example Recall the last trace command with Trace→Trace Spec..., or by entering:

trace modify_command

Then edit the trace command as you desire.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

248

To repeat the previous trace command

• Choose Trace→Again.

• To continually repeat the last trace, choose Trace→Repetitively.

• Using the command line, repeat the previous trace command (including its
complete trace specification) by entering:

trace again

The trace again command is most useful when you want to repeat a measurement
with the same trace specification. It saves you the trouble of reentering the
complete trace command specification.

The "repetitively" choice continually repeats the last trace command. Successive
traces begin as soon as the results from the just-completed trace are displayed.

Also, this command is useful when you load a trace specification from a file. (See
"To load a trace specification" in this chapter.)

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

249

To capture a continuous stream of program
execution no matter how large your program

The following example can be performed in emulation systems using the deep
analyzer (it cannot be done with the 1K analyzer). It shows you how to capture all
of the execution of your target program. You may wish to capture target program
execution for storage, for future reference, and/or for comparison with execution
after making program modifications. The execution of a typical target program will
require more memory space than is available in the trace memory of an analyzer.
This example shows you how to capture all of your target program execution while
excluding unwanted execution of the emulation monitor.

1 Choose Trace→Display Options ..., and in the dialog box, enter 0 or the total
depth of your deep analyzer trace memory in the entry field beside Unload Depth.
Then click OK or Apply. This sets unload depth to maximum.

2 For this measurement, the analyzer will drive trig1 and the emulator will receive
trig1 from the trigger bus inside the card cage. The trig1 signal is used to cause the
emulator to break to its monitor program shortly before the trace memory is filled.
This use of trig1 is not supported in workstation interface commands. Therefore,
terminal interface commands (accessible through the pod command feature) must
be used. Enter the following commands:

Settings→Pod Command Keyboard
tgout trig1 -c <states before end of memory> (trigger output trig1 before trace
complete)
bc -e trig1 (break conditions enabled on trig1)
Click the suspend softkey

Note that "tgout trig1 -c <states...>" means generate trig1 as an output when the
state that is <states...> before the end of the trace memory is captured in the trace
memory; "bc -e trig1" means enable the emulator to break to its monitor program
when it receives trig1.

Select a value for <states before end of memory> that allows enough time and/or
memory space for the emulator to break to its monitor program before the trace
memory is filled. Otherwise, some of your program execution will not be captured
in the trace. Many states may be executed before the emulation break occurs,
depending on the state of the processor when the trig1 signal arrives. Also, if your
program executes critical routines in which interrupts are masked, the occurrence of

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

250

trig1 may be ignored until the critical routine is completed (when using a
foreground monitor).

3 If you are using a foreground monitor, enter the following additional pod
commands to prevent the trace memory from capturing monitor execution. The
following example commands will obtain this result in some emulators:

Settings→Pod Command Keyboard
trng addr=<address range occupied by your monitor> (trigger on range address
= <address range>)
 where <address range> is expressed as <first addr>..<last addr>
tsto !r (trace store not range)
Click the suspend softkey

Note that "trng addr=<addr>..<addr>" means define an address range for the
analyzer; "tsto !r" means store all trace activity except activity occurring in the
defined address range.

4 Start the analyzer trace with the command, Trace→Again

5 Start your program running using Execution→Run→from() , from Transfer
Address, or from Reset, as appropriate.

The Trace→Again (or trace again) command starts the analyzer trace with the
most recent trace specifications (including the pod_command specifications you
entered). The trace command cannot be used by itself because it defaults the "bc -e
trig1", "trng addr=...", and "tsto !r" specifications, returning them to their default
values before the trace begins.

You can see the progress of your trace with the command, Display→Status. A
line in the Trace Status listing will show how many states have been captured.

6 The notation "trig1 break" usually followed by "Emulation trace complete" will
appear on the status line. If "trig1 break" remains on the status line without
"Emulation trace complete", manually stop the trace with the command:

Trace→Stop

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

251

You must wait for the notation "trig1 break" and/or "Emulation trace complete" to
appear on the status line; this ensures the trace memory is filled during the trace
(except for the unfilled space you specified in Step 2 above).

Note that when you set a delay specification using tgout -c or tgout -t (trigger
output delay before trace complete/after trigger), the trace will indicate complete as
soon as the analyzer has captured the state specified, even though the entire trace
memory has not been filled.

If the notation "trig1 break" remains on the status line without being replaced by
"Emulation trace complete", it indicates the trace memory is not completely filled,
and no more states are being captured.

7 Store the entire trace memory content in a file with a command like:

wait measurement_complete ; copy trace to <directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that the
unload of trace data is complete before you try to store it. Without "wait", you will
get an ERROR message warning that the unload is still in process. The
<filename> is an ASCII filename for a binary file that can be viewed using the
load trace command.

8 Start a new trace with the command: trace again

9 Resume the program run from the point where it was interrupted when the emulator
broke to the monitor with the command: run

10 Wait until the notation "trig1 break" and/or "Emulation trace complete" appears on
the status line. Then store the new trace memory content in a new file with
commands like:

stop_trace
wait measurement_complete ; copy trace to <directory/filename+1>

Note that "filename+1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAME1, FILENAME2, etc.

Repeat steps 8 through 10 above until all program execution has been captured.
Your destination directory will have a set of files that, taken together, contain all of
your program execution. Note that if you did not prevent capture of foreground

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

252

monitor cycles in step 3 above, the last few trace lines in each file may contain
monitor cycles.

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

253

Saving and Restoring Trace Data and
Specifications

The emulator/analyzer can save your trace data and trace specifications in a file for
later use. This can help you record measurement results that you can use for
comparison with other tests, and it is useful to automate measurements.

Suppose you’re using the emulator in a manufacturing test application. The target
system is your product board. You might build a command file that recalls a trace
specification, makes the trace on the target board, and then recalls a previous
measurement result (from a working product) and compares it to the new
measurement (using the UNIX diff command).

To store a trace specification

• Choose File→Store→Trace Spec... In the dialog box, select an existing filename
or specify a new filename to contain the present trace specification. Then click OK.

• Using the command line, store the current trace specification by entering:

store trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is
automatically added to the file name.

The trace specification file is a binary file.

The store trace_spec command allows you to save a trace specification (effectively
the current trace command with all trigger, storage and sequence options) in a file
for later use. For example, you might have several trace commands that you want
to make every time your target system program is modified. You can store each
trace command in a separate file and recall it later using the load trace_spec
command.

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

254

Example Store a trace specification to a file:

store trace_spec tspec.TS

To store trace data

• Choose File→Store→Trace Data... In the dialog box, select an existing filename
or specify a new filename to contain the present trace memory content. Then click
OK.

• Using the command line, store the current trace data by entering:

store trace <filename>

<filename> is any UNIX file name including paths. The trace data file is a binary
file. The extension .TR is automatically added to the file name. A trace data file
can be reloaded into the interface and displayed like any other trace listing.

You can store the trace data resulting from a measurement. This can be useful if
you want to compare the results of later measurements with a reference result
obtained in an earlier measurement.

Example Store a trace to a file:

store trace trace1.TR

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

255

To load a trace specification

• Choose File→Load→Trace Spec... In the dialog box, click on the name of the
trace specification you want to load (placing it in the Load Trace Specification
box). Then click OK.

• Using the command line, load an existing trace specification from a file by entering:

load trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is assumed.

Once you save a trace specification in a file using the File→Store→Trace Spec...
or store trace_spec command, you can load it using the appropriate command
above. To start a trace with the trace specification that you loaded, use the
Trace→Again or trace again command.

Example Load a trace specification from a file and start the trace:

load trace_spec tspec

trace again

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

256

To load trace data

• Choose File→Load→Trace Data... In the dialog box, click on the name of the
trace data file (file of trace memory content) you want to load (placing it in the
Load Trace Data box). Then click OK.

• Using the command line, load trace data from a file by entering:

load trace <filename>

<filename> is any UNIX file name including paths. The extension .TR is assumed.

Loads a previously saved trace from a binary trace data file (with a ".TR" suffix).

Once you save trace data in a file using the File→Store→Trace Data... or store
trace command, you can reload it. To view the data you loaded, use the
Display→Trace, Trace→Display, or display trace command. Remember that a
new trace measurement will overwrite this trace data (but not the file from which it
was loaded).

The interface will try to display the trace listing in the display format active when
the trace data was stored. If the interface needs symbols to replace absolute
addresses or to find high-level source lines, and symbols are not loaded, an error
occurs.

For example, suppose "source-mixed" was the display mode when the trace was
captured and the executable file "test1" was the file being executed in the
emulator/target system. To reload and display a trace listing saved from that
emulation session requires reloading the symbols for "test1".

Example Load a trace from a file:

load trace trace1

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

257

Saving and Restoring DeMMUer Setup Files

To store a DeMMUer setup file

• Choose File→Store→DeMMUer (From MMU Tables)... In the dialog box, click
on the name of the file you want to store your deMMUer setup (placing it in the
Store Demmuer File box). Then click OK.

• Using the command line, store a deMMUer setup file by entering:

store demmuer <filename>

<filename> is any UNIX file name including paths. The extension .ED is assumed.

Stores a deMMUer setup file (with a ".ED" suffix) by reading the present content of
the MMU registers and the MMU tables.

To load a DeMMUer setup file

Choose File→Load→DeMMUer... In the dialog box, click the name of the file
you want to load (placing it in the Load Demmuer File box). Then click OK.

• Using the command line, load a deMMUer setup file by entering:

load demmuer <filename>

<filename> is any UNIX file name including paths that was created by an
appropriate store demmuer command. The extension .ED is assumed.

The deMMUer setup file is loaded into the deMMUer. The present content of the
MMU registers and the MMU tables are ignored.

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring DeMMUer Setup Files

258

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statememts that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:

• Store BBA data to a file.

Refer to the HP Branch Validator (BBA) User’s Guide for complete details on the
BBA product and how it works.

To store BBA data to a file

• Choose File→Store→BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data" can be selected from the dialog box.

Chapter 5: Using the Emulation-Bus Analyzer
Using Basis Branch Analysis

259

260

6

Making Coordinated Measurements

Using the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

261

The Elements of Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and allows
you to make synchronous measurements between those emulators.

For example, you might have a target system that contains an MC68040 processor
and another processor. You use HP 64700 Series emulators to replace both target
system processors, and connect the emulators using the CMB. You can run a
program simultaneously on both emulators. Or, you can start a trace on one
emulation-bus analyzer when the other emulator reaches a certain program address.
These measurements are possible with the CMB.

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

Tasks that you perform to make coordinated measurements include:

• Setting up for coordinated measurements.

• Starting and stopping multiple emulators.

• Driving trigger signals to the CMB or BNC.

• Stopping program execution on trigger signals.

• Arming analyzers on trigger signals.

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

262

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

CMB Connector

BNC Connector

There are three bidirectional signal lines on the CMB connector on the rear panel of
the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven
or received by any HP 64700 connected to the CMB. This
signal can be used to trigger an analyzer. It can be used as a
break source for the emulator.

READY The CMB READY line is high true. It is an open collector
circuit and performs an ANDing of the ready state of enabled
emulators on the CMB. Each emulator on the CMB releases this
line when it is ready to run. This line goes true when all enabled
emulators are ready to run, providing for a synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for
CMB READY to go true before returning to the run state.
When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume
running. When an emulator is reset, it also drives CMB
READY false.

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

263

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is
processed by both the emulator and the analyzer. This signal
causes an emulator to run from a specified address when CMB
READY returns true.

Comparison Between CMB and BNC Triggers

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

The CMB trigger and BNC trigger lines have the same logical purpose: to provide a
means for connecting the internal trigger signals (trig1 and trig2) to external
instruments. The CMB and BNC trigger lines are bidirectional. Either signal may
be used directly as a break condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is ignored internally.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

264

Setting Up for Coordinated Measurements

This section describes how:

• To connect the Coordinated Measurement Bus.

• To connect the rear panel BNC.

For more information, refer to the HP 64700 Series Installation/Service Guide.

To connect the Coordinated Measurement Bus
(CMB)

CAUTION Be careful not to confuse the 9-pin connector used for the CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cable for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

 You can build your own compatible CMB cables using standard 9-pin D type subminiature connectors
and 26 AWG wire.

Hewlett-Packard does not guarantee proper CMB operation if you are using a self-built cable!

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

265

1 Connect the cables to the HP 64700 CMB ports.

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

266

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

2 to 8 100 meters None.

9 to 16 50 meters None.

9 to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Sales Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

CAUTION The BNC line on the HP 64700 accepts input and output of TTL levels only. TTL
levels must not be less than 0 volts or greater than 5 volts. Failure to observe these
specifications may result in damage to the HP 64700 Card Cage.

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

267

1 Connect one end of a 50-ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising edge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a receiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected and is
protected from TTL level signals when the emulator is powered down.

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

268

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:

• Enable synchronous measurements.

• Start synchronous measurements.

• Disable synchronous measurements.

To enable synchronous measurements

• Enter the specify run command on the command line.

You can enable the emulator’s interaction with the CMB by using the specify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specified in the specify run
command.

Note that when the CMB is being actively controlled by another emulator, the step
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction while stepping the processor. (See “To
disable synchronous measurements” following.)

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use the specify trace command to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined by the specify trace command will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message “CMB execute; emulation trace started”.

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

269

When you enter a normal trace command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

Examples To enable synchronous measurements from the transfer address:

specify run from transfer_address

To trace from an address when synchronous execution begins:

specify trace after address 10h

To start synchronous measurements

• Enter the cmb_execute command on the command line.

The cmb_execute command will cause the emulator to emit a pulse on the
EXECUTE line, thereby initiating a synchronous measurement. You do not have to
enable CMB interaction to use the cmb_execute command because by enabling
CMB interaction, you are only specifying how the emulator will react to the CMB
EXECUTE signal.

All emulators whose CMB interaction is enabled will break into the monitor when
any one of the emulators participating in the synchronous measurement breaks to
its monitor.

To disable synchronous measurements

• Enter the specify run disable command on the command line.

You can disable the emulator’s interaction with the CMB by using the specify run
disable command. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

270

Using Trigger Signals

The HP 64700 contains two internal lines, trig1 and trig2 , that can carry trigger
signals from the emulator or analyzer to other HP 64700s on the Coordinated
Measurement Bus (CMB) or other instruments connected to the BNC connector.

You can configure the internal lines to make connections between the emulator,
analyzer, CMB connector, or BNC connector. Measurements that depend on these
connections are called interactive measurements or coordinated measurements.

• To configure the internal trig1 and trig2 lines, you must access the emulation
configuration, either by choosing Modify →Emulator Config ... in the graphical
user interface and then selecting Interactive Measurement Specification, or by
entering the modify configuration command in the softkey interface, and then
answering “yes” to the “Modify interactive measurement specification?” question.
In the softkey interface, the following display appears.

This display illustrates the possible connections between the internal lines (trig1
and trig2) and the emulator, analyzer, and external devices.

 Interactive Measurement Specification

 BNC <<-??->> ---\ BNC <<-??->> ---\
 | |
 CMBT <<-??->> ---| CMBT <<-??->> ---|
 | Trig1 | Trig2
 Emulator <<------ ---| Emulator <<-??--- ---|
 | |
 Analyzer ------>> ---/ Analyzer <<-??->> ---/

NOTES:
 1. The connections marked "??" are set up here in configuration.
 2. drive = ---->> receive = <<---- (The display won’t change, however.)

STATUS: Interactive Measurement Specification_________________________........
Should BNC drive or receive Trig1? neither

_drive__ receive_ neither_ __both__ ________ ________ ________ _RECALL_

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

271

Notice that the analyzer always drives trig1, and the emulator always receives trig1.
This provides for the break_on_trigger syntax of the trace command.

You can disable connections made by the internal trig1 and trig2 lines by
answering “neither” or “no” to the appropriate interactive measurement
configuration question.

These are some ways that you can use the internal trigger signals:

• You can use the trig1 or trig2 line to make a connection between the analyzer
and the CMB connector or BNC connector so that, when the analyzer finds its
trigger condition, a trigger signal is driven on the HP 64700’s Coordinated
Measurement Bus (CMB) or BNC connector.

• You can use the trig1 or trig2 line to make a connection between the emulator
break input and the CMB connector, BNC connector, or analyzer so that
program execution can break when a trigger signal is received from the CMB,
BNC, or analyzer.

• You can use the trig2 line to make a connection between the analyzer and the
CMB connector or BNC connector so that the analyzer can be armed (that is,
enabled) when a trigger signal is received from the CMB or BNC connector.

• You can use the trig1 and trig2 lines to make several types of connections at
the same time. For example, when the analyzer finds its trigger condition, a
signal is driven on the trig1 line. This signal may be used to stop user program
execution, but the trigger signal may also be driven on the CMB and BNC
connectors.

• It is possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven
on the CMB and BNC connectors, signals can also be received from the CMB
and BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

The following tasks show you how to set up the emulator and analyzer to:

• Drive the emulation trigger to the CMB and BNC.

• Break emulator execution on CMB and BNC signals.

• Arm the emulation-bus analyzer on CMB, BNC, and analyzer signals.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

272

To drive the emulation-bus analyzer trigger
signal to the CMB

• Choose Modify →Emulator Config ...

1 In the top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Choose “receive” beside the “CMBT on Trig1?” question.

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “receive” to the “Should CMBT drive or receive Trig1?” question.

You could also drive the emulation-bus analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation-bus analyzer should drive trig2.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

273

To drive the emulation-bus analyzer trigger
signal to the BNC connector

• Choose Modify →Emulator Config ...

1 In the top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Choose “receive” beside the “BNC on Trig1?” question.

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “receive” to the “Should BNC drive or receive Trig1?” question.

You could also drive the emulation-bus analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the
emulation-bus analyzer should drive trig2.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

274

To break emulator execution on signal from CMB

• Choose Modify →Emulator Config ...

1 In the top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select "drive" for the "CMBT on Trig1" item.

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should CMBT drive or receive Trig1?” question.

The trig1 signal is always supplied to the emulator. By entering the command,
trace break_on_trigger emulation will break to the monitor when the CMB signal
occurs.

You could also break emulator execution on a trigger signal from the CMB over the
trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

275

To break emulator execution on signal from BNC

• Choose Modify →Emulator Config ...

1 In the top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select "drive" for the "BNC on Trig1" item.

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should BNC drive or receive Trig1?” question.

The trig1 signal is always supplied to the emulator. By entering the command,
trace break_on_trigger emulation will break to the monitor when the BNC signal
occurs.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

276

To arm the emulation-bus analyzer on signal
from CMB

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should CMBT drive or receive Trig2?” question.

3 Answer “receive” to the “Should Analyzer drive or receive Trig2?” question.

4 Use the arm_trig2 option to the trace command.

To arm the emulation-bus analyzer on signal
from BNC

• Using the command line, enter modify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should BNC drive or receive Trig2?” question.

3 Answer “receive” to the “Should Analyzer drive or receive Trig2?” question.

4 Use the arm_trig2 option to the trace command.

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

277

Making Example Measurements

The following tasks show you how to:

• Start a simultaneous program run on two emulators.

• Trigger one emulation-bus analyzer with another.

• Break to the monitor on an analyzer trigger signal.

To start a simultaneous program run on two
emulators

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see "To connect the coordinated measurement bus (CMB)" at the
beginning of this chapter.

1 Enable the CMB on each emulator.

2 Reset each emulator.

3 Set the run address for the first emulator.

4 Set the run address for the second emulator.

5 Start program execution on both emulators.

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then start the analysis trace to enable trace on execute for each emulator. When the
EXECUTE signal is received, both emulators will begin running and will start a
trace according to the given trigger specification.

Chapter 6: Making Coordinated Measurements
Making Example Measurements

278

To trigger one emulation-bus analyzer with
another

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see "To connect the coordinated measurement bus (CMB)" at the
beginning of this chapter.

1 Enable the CMB on each emulator.

2 Reset each emulator.

3 Set up the first emulator to drive the CMB trigger.

4 Set up the second emulator to receive the CMB trigger.

5 Start a trace on each emulation-bus analyzer.

6 Start a run on each emulator.

In the above steps, you set one emulation-bus analyzer to drive the CMB trigger,
and set another to trigger on receipt of a CMB trigger. You can use the same
concepts to trigger external instruments using the BNC connector on the rear panel
of the HP 64700 Series Card Cage.

Chapter 6: Making Coordinated Measurements
Making Example Measurements

279

To break to the monitor on an analyzer trigger
signal

1 Enter the emulation configuration.

2 Set the emulator to receive trig1.

3 Set the emulation-bus analyzer to drive trig1.

4 Specify the trigger conditions for the trace.

5 Start the trace.

6 Start the program run.

The trigger signals and the analyzer trigger capabilities allow you to specify
breakpoints. You can use the trigger specification to specify complex sequences of
address, data and status, then break the program to the monitor when the sequence
is found. This is useful when you want to examine memory locations and registers
after the trigger condition occurs, but before further program execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received.

Chapter 6: Making Coordinated Measurements
Making Example Measurements

280

7

Making Software Performance
Measurements

How to make software performance measurements on your programs

281

Using the Software Performance Measurement
Tool

The Software Performance Measurement Tool (SPMT) is a feature included in the
emulator/analyzer that allows you to make software performance measurements on
your programs. Two types of software performance measurements can be made
with the SPMT: activity measurements, and duration measurements.

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using the perf32 report generator utility.

Use the Software Performance Analyzer (SPA) for
more capability

For more capability in making measurements of the performance of your software,
you can order the Software Performance Analyzer (SPA). SPA helps designers
understand the execution of software modules in an absolute file.

SPA provides answers to questions such as:

• Why does it take so long to execute a program?
• Which modules are taking extra long time to execute?

While SPA performs a measurement, it shows the current measurement results.
There is no need for you to transfer files; all you do is indicate the type of display
desired (histogram or table listing). If you are interested in purchasing SPA,
contact your HP Sales Representative.

Chapter 7: Making Software Performance Measurements
Using the Software Performance Measurement Tool

282

Understanding activity measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (such as reads, writes, and stack pushes).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement will
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address range,
you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown in the next figure.

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

283

 Label

prog
 Address Range ADEH thru 1261H

 Memory Activity
 State Percent Rel = 57.77 Abs = 57.77
 Mean = 295.80 Sdv = 26.77
 Time Percent Rel = 60.97 Abs = 60.97

 Program Activity
 State Percent Rel = 99.82 Abs = 99.82
 Mean = 511.10 Sdv = 0.88
 Time Percent Rel = 99.84 Abs = 99.84

data
 Address Range 6007AH thru 603A5H

 Memory Activity
 State Percent Rel = 30.51 Abs = 30.51
 Mean = 156.20 Sdv = 31.87
 Time Percent Rel = 28.09 Abs = 28.09

 Program Activity
 State Percent Rel = 0.18 Abs = 0.18
 Mean = 0.90 Sdv = 0.88
 Time Percent Rel = 0.16 Abs = 0.16

stack
 Address Range 40000H thru 43FFFH

 Memory Activity
 State Percent Rel = 11.72 Abs = 11.72
 Mean = 60.00 Sdv = 29.24
 Time Percent Rel = 10.94 Abs = 10.94

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Graph of Memory Activity relative state percents >= 1
prog 57.77% *****************************
data 30.51% ****************
stack 11.72% ******

Memory and Program Activity

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

284

 Graph of Memory Activity relative time percents >= 1
prog 60.97% *******************************
data 28.09% **************
stack 10.94% ******

 Graph of Program Activity relative state percents >= 1
prog 99.82% **

 Graph of Program Activity relative time percents >= 1
prog 99.84% **

 Summary Information for 10 traces

 Memory Activity
 State count
 Relative count 5120
 Mean sample 170.67
 Mean Standard Dv 29.30
 95% Confidence 12.28% Error tolerance
 Time count
 Relative Time - Us 2221.20

 Program Activity
 State count
 Relative count 5120
 Mean sample 170.67
 Mean Standard Dv 0.58
 95% Confidence 0.24% Error tolerance
 Time count
 Relative Time - Us 2221.20
 Absolute Totals
 Absolute count - state 5120
 Absolute count - time - Us 2221.20

Memory and Program Activity (Cont’d)

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

285

Understanding duration measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The trace command is set up to store only the entry and exit
states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

Before you perform duration measurements, you should be aware of the prefetch
and recursion considerations associated with these measurements.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Prefetches or recursion can place several entry addresses before the first exit
address, and/or several exit addresses before the first entry address. Duration
measurements are made between the last entry address in a series of entry
addresses, and the last exit address in a series of exit addresses as shown in the
prefetch correction listing. All of the entry and exit addresses which precede these
last addresses are assumed to be unused prefetches, and are ignored during time
measurements.

 START - unused prefetch
 START - unused prefetch
 START - unused prefetch
 START - START actually taken -
 END - unused prefetch
 END - unused prefetch Measure duration
 END - unused prefetch
 END - END actually taken -
 START - unused prefetch
 START - unused prefetch Measure duration
 START - unused prefetch
 START - START actually taken -
 END - unused prefetch
 END - unused prefetch

Chapter 7: Making Software Performance Measurements
Understanding duration measurements

286

The SPMT makes its duration measurements from the last start address in the series
of start addresses, to the last end address in the series of end addresses. The other
start and end addresses are unused prefetches and are ignored by the software of the
SPMT. Recursive procedures will still affect the accuracy of your measurements.

The prefetch correction has the following consequences:

• Prefetches are ignored. They do not affect the accuracy of the measurement in
process.

• When measuring a recursive function, module duration will be measured
between the last recursive call and the true end of the recursive execution. This
will affect the accuracy of the measurement.

• If a module is entered at the normal point, and then exited by a point other than
the defined exit point, the entry point will be ignored. It will be judged the
same as any other unused prefetch, and no time-duration measurement will be
made. Its time will be included in the measure of time spent outside the
procedure or function.

• If a module is exited from the normal point, and then reentered from some
other point, the exit will also be assumed to be an unused prefetch of the exit
state.

If you are making duration measurements on a function that is recursive, or one that
has multiple entry and/or exit points, the result may be invalid information.

To use the Software Performance Measurement
Tool

Activity and duration measurements are made with the SPMT in a five-step
process, summarized as follows:

1 Set up the trace command.

2 Initialize the performance measurement.

3 Run the performance measurement.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

287

4 End the performance measurement.

5 Generate the performance measurement report.

Step 1. Set up the trace command

Before you initialize and run performance measurements, the current trace
command (the last trace command entered) must be properly set up.

1 Increase the trace depth to the maximum number by entering:

display trace depth 512

In general, you want to give the SPMT as many trace states as possible to
post-process to increase statistical accuracy. Also it is important that "time" be
counted by the analyzer; otherwise, the SPMT measurements will not be
correct.

2 Choose to make either activity measurements or duration measurements.

• To make activity measurements (which measures activity as a percentage of all
activity, the current trace command should be the default), enter:

trace counting time

The default trace command triggers on any state, and all captured states are
stored. Also, since states are stored "after" the trigger state, the maximum
number of captured states appears in each trace list.

You can use trace commands other than the default. You can qualify trace
commands any way you like to obtain specific information. However, when
you qualify the states that get stored in the trace memory, your SPMT results
will be biased by your qualifications; the percentages shown will be of only
those states stored in the trace list.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

288

• To make duration measurements, set up the trace command to store only the entry
and exit points of the module of interest. For example:

trace after <symbol_entry> or <symbol_exit> only
symbol_entry or symbol_exit counting time

or

trace after <module_name> start or module_name end only
module_name start or module_name end counting time

Since the trigger state is always stored, you should trigger on the entry or exit
points.

<symbol_entry> and <symbol_exit> are symbols from the user program.

<module_name> is the name of a C function or Pascal procedure (and is listed
as a procedure symbol in the global symbol display).

Step 2. Initialize the performance measurement

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements or the time ranges to be used in the
duration measurement. This is done by initializing the performance measurement,
which can be accomplished in various ways.

• To use the default configuration, enter the following command with no options:

performance_measurement_initialize

This specifies an activity measurement. If a valid symbolic database has been
loaded, the addresses of all global procedures and static symbols will be used.
Otherwise, a default set of ranges that cover the entire processor address range
will be used.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

289

• To initialize with user-defined files (activity or duration measurement), specify the
SPMT address or time ranges to use by placing the information in a file and
entering the file name in the performance_measurement_initialize command.

The formats for the address range file (activity measurements) and time range
file (duration measurements) are described in this chapter.

• To include program symbols (procedure name or static), user defined address
ranges, and comments in address range files, refer to this example file:

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symbol1 -> program_symbol2

"->" means through. The above will define a range which starts with symbol1
and goes through symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 through the end of symbol2.

dir1/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

• To include comments and units for time ranges in time range files, refer to this
example file:

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
3.55 s 6.77 s

us microseconds
ms milliseconds
s seconds

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

Time units can be in microseconds (us), milliseconds (ms), or seconds (s).

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

290

• To select duration measurements, enter:

performance_measurement_initialize duration

or

performance_measurement_initialize <FILE> duration

When no user defined time range file is specified, the following set of default time
ranges are used.
1 us 10 us
10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1 ms 1.2 s

• To initialize with global symbols, enter:

performance_measurement_initialize

or

performance_measurement_initialize global_symbols

Global symbols in the symbols database becomes the address ranges for which
activity is measured. If the symbols database is not loaded, a default set of
ranges that cover the entire processor address range will be used. The global
symbols database contains procedure symbols, which are associated with the
address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

291

• To initialize with local symbols, enter:

performance_measurement_initialize local_symbols_in
<source file name>

The symbols associated with the source file become the address ranges for
which activity is measured. If the symbols database is not loaded, an error
message will occur telling you that the source filename symbol was not found.

You can also use the "local_symbols_in" option with procedure symbols. This
allows you to measure activity related to the symbols defined in a single
function or procedure.

These are example commands showing performance measurement initialization
with local symbols.

performance_measurement_initialize local_symbols_in
spmt_demo.C:

performance_measurement_initialize local_symbols_in
spmt_demo.C:math_library

performance_measurement_initialize local_symbols_in
math_library

• To restore the current measurement, enter:

performance_measurement_initialize restore

This allows you to restore old performance measurement data from the
perf.out file in the current directory.

If you have not exited and reentered emulation, you can add traces to a
measurement simply by entering another performance_measurement_run
command. However, if you exit and reenter the emulation system, you must
enter the performance_measurement_initialize restore command before you
can add traces to a measurement. When you restore a performance
measurement, make sure your current trace command is identical to the
command used with the restored measurement.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

292

When restoring old performance measurement data, the "restore" option determines
if the current emulator software version matches the version used when the
performance measurement data was stored (in the perf.out files). If the versions
match, the restore will be performed. If you ran tests using a former software
version and saved perf.out files, then updated your software to a new version
number, you will not be able to restore old perf.out measurement files.

Step 3. Run the performance measurement

The performance_measurement_run command processes analyzer trace data.
When you end the performance measurement, this processed data is dumped to the
binary "perf.out" file in the current directory. The perf32 report generator utility is
used to read the binary information in the "perf.out" file.

• To process the current trace data, enter:

performance_measurement_run

• To execute the current trace command consecutively, a certain number of times,
enter:

performance_measurement_run <COUNT>

The data that results from each trace command is processed and combined with
the existing processed data. The STATUS line will say "Processing trace
<NO.>" during the run so you will know how your measurement is
progressing. The only way to stop this series of traces is by using CTRL c (sig
INT).

The more traces you include in your sample, the more accurate your results
will be. At least four consecutive traces are required to obtain statistical
interpretation of activity measurement results.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

293

Step 4. End the performance measurement

• To end the performance measurement, enter:

performance_measurement_end

The performance_measurement_end command takes the data generated by the
performance_measurement_run command and places it in a file named perf.out
in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must rename the perf.out file before performing another
measurement.

The performance_measurement_end command does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering another performance_measurement_run command.

Once you have entered the performance_measurement_end command, you can
use the perf32 report generator to look at the data saved in the perf.out file.

The "perf.out" file is a binary file. Do not try to read it with the UNIX more or cat
commands. The perf32 report generator utility (described in the following section)
must be used to read the contents of the "perf.out" file.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

294

Step 5. Generate the performance measurement
report

The perf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). The perf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and run perf32, or you can exit the Softkey
Interface and run perf32.

• To save the current performance measurement information in a file called
"perf1.out", and produce a histogram showing only the program activity occupied
by the functions and variables.

mv perf.out perf1.out
perf32 -hpf perf1.out

A default report, containing all performance measurement information, is generated
when the perf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options
are:

-h Produce outputs limited to histograms.

-s Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.

-f<file> Produce a report based on the information contained in <file>
instead of the information contained in perf.out.

-c Print only program and memory activity information
consuming time.

Options -h, -s, -p, and -m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

295

The reports generated for activity measurements show you the percentage of
analyzer trace states that are in the specified address range, as well as the
percentage of time taken by those states. The performance measurement must
include four traces before statistics (mean and standard deviation) appear in the
activity report.

• To interpret reports of activity measurements, understand the information described
here. You will see this information in activity measurement reports.

Memory activity All activity found within the address range.

Program activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the
cycles that result from the execution of those instructions
(like reads and writes to memory and stack pushes).

Relative A count or time value associated with activity in address
ranges in the performance measurement.

Absolute A count or time value associated with all trace state
activity, not just activity in the address ranges defined for
the performance measurement.

Mean Average number of analyzer trace states in the range
specified. The following equation is used to calculate the
mean:

Standard deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

296

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.

Ssumq Sum of squares of states in the range per trace.

Symbols within range Names of other symbols that identify addresses or ranges
of addresses within the range of this symbol.

Additional symbols
for address

Names of other symbols that also identify this address.
Some compilers emit more than one symbol for certain
addresses. For example, a compiler may emit
"math_library" and "_math_library" for the first address in
a routine named math_library. The analyzer will show the
first symbol it finds to represent a range of addresses, or a
single address point, and it will show the other symbols
under either "Symbols within range" or "Additional
symbols for address", as applicable. In the "math_library"
example, it may show either "math_library" or
"_math_library" to represent the range, depending on
which symbol it finds first. The other symbol will be
shown below "Symbols within range" in the report. These
conditions appear particularly in default measurements that
include all global and local symbols.

Relative and absolute
counts

Relative count is the total number of states associated with
the address ranges in the performance measurement.
Relative time is the total amount of time associated with
the address ranges in the performance measurement. The
absolute counts are the number of states or amount of time
associated with all the states in all the traces.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

297

Error tolerance and
confidence level

An approximate error may exist in displayed information.
Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (the mean sample).

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

298

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges.

• To interpret reports of duration measurements, understand the information
described here. You will see this information in duration measurement reports.

Number of intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum time The greatest amount of time between the "from address" to
the "to address".

Minimum time The shortest amount of time between the "from address" to
the "to address".

Average time Average time between the "from address" and the "to
address". The following equation is used to calculate the
average time:

Standard deviation Deviation from the mean of time. The following equation
is used to calculate standard deviation:

Where:

N Number of intervals.

mean Average time.

Ssumq Sum of squares of time in the intervals.

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

299

Error tolerance and
confidence level

An approximate error may exist in displayed information.
Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om Mean of the standard deviations in each time range.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of intervals.

Pm Mean of the means (for example, mean of the average
times in each time range).

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

300

8

Configuring the Emulator

301

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

• Using the configuration interface.

• Setting up the emulation monitor.

• Mapping memory.

• Modifying the general configuration items.

• Selecting analyzer trace options.

• Configuring simulated I/O.

• Specifying connections for interactive measurements.

The simulated I/O feature and configuration questions are described in the
Simulated I/O User’s Guide.

The interactive measurement configuration options are described in this chapter,
and additional information is given in Chapter 6, "Making Coordinated
Measurements".

302

Using the Configuration Interface

This section shows you how to set up, modify, and store emulation configurations
using the emulator configuration interface.

This section shows you how to:

• Start the configuration interface.

• Modify a configuration section.

• Apply configuration changes to the emulator.

• Store configuration changes to a file.

• Change the configuration directory context.

• Display the configuration context.

• Access help topics.

• Access context sensitive (f1) help.

• Exit the configuration interface.

This section describes the emulator configuration in general. The remaining
sections in this chapter describe the specific configuration options for your
emulator.

When you have developed an emulation configuration, saved it to a file, and closed
the configuration interface, you can use the File→Load→Emulator Config...
command and associated dialog box in the top level emulator/analyzer interface to
load the configuration file into your emulator.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

303

To start the configuration interface

• Choose Modify →Emulator Config... from the emulator/analyzer interface
pulldown menu.

• Using the command line, enter the modify configuration command.

The configuration interface top-level dialog box (see the following example) is
displayed.

The configuration sections that are presented depend on the hardware and the
features of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you’re using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration sections;
however, you have access to the same configuration options through a series of
configuration questions.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

304

Examples The 68040 emulator configuration interface top-level dialog box is shown below.

The menu bar.

Clicking on one of
these lines selects
the associated
configuration
section.

Clicking this
pushbutton loads any
configuration changes
into the emulator.

This portion of the dialog box displays
configuration status information.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

305

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface top-level dialog box.

3 Use the section dialog box to make changes to the configuration.

If you are using the Softkey Interface:

The configuration questions in the "Monitor Setup" section are the first to be
asked.

To access the memory map and define, modify, or delete map entries in the
"Memory Map" section, answer "yes" to the "Modify memory configuration?"
question.

To access the questions in the "General Items" section, answer "yes" to the
"Modify emulator pod configuration?" question.

To access the questions in the "Trace Options" section, answer "yes" to the
"Modify debug/trace options?" question.

To access the questions in the "Simulated IO" section, answer "yes" to the
"Modify simulated I/O configuration?" question.

To access the questions in the "Interactive Measurement Specification" under
"Analyzer Configuration" section, answer "yes" to the "Modify interactive
measurement specification?" question.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

306

Examples Most configuration sections provide dialog boxes similar to the following.

The dialog box for
this section has
been opened.

Applies configuration
changes to the emulator.

Configuration options
in this section.

Presents emulator
configuration help
topic browser.

Cancels all changes
since the last "OK",
"Apply to Emulator",
or store to file.

Closes the dialog box.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

307

As soon as you change a configuration option, the change is recorded (as seen by
the "Changes Not Loaded" message in the top level dialog box).

To apply configuration changes to the emulator

• Click the "Apply to Emulator" pushbutton in the top-level dialog box.

This loads the configuration changes into the emulator. Status text to the right
shows whether or not the load was successful.

You can apply configuration changes to the emulator at any time (even while
several of the configuration dialog boxes are open). This lets you verify changes
without closing dialog boxes for the configuration sections.

The "Apply to Emulator" pushbutton does not create a file to store configuration
changes. To do that, choose the File→Store... pulldown in the top level interface
window, described later.

If you exit the configuration interface with configuration changes that have not
been stored, you will be asked whether you want to store the changes, exit without
storing, or cancel the exit.

To store configuration changes to a file

• Choose File→Store... from the pulldown menu in the top-level configuration
interface window, and use the file selection dialog box to name the configuration
file.

• If you’re using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don’t enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

Chapter 8: Configuring the Emulator
Using the Configuration Interface

308

When modifying a configuration using the graphical user interface, you can store
your answers at any time.

Configuration information is saved in a file with an extension of ".EA".

When using the Graphical User Interface, do not try to modify the ".EA". It may
not load correctly after modification. Instead, start the configuration interface,
make desired modifications, and store the configuration file to a new, or existing,
filename.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
in Chapter 3, "Using the Emulator/Analyzer Interface".

To change the configuration directory context

• Choose File→Directory... from the pulldown menu in the top-level configuration
interface window, and use the directory selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
in Chapter 3, "Using the Emulator/Analyzer Interface".

Chapter 8: Configuring the Emulator
Using the Configuration Interface

309

To display the configuration context

• Choose Display→Context... from the pulldown menu in the top-level
configuration interface window.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

To access help topics

• Choose Help→General Topic... from the pulldown menu in the top-level
configuration interface window, click on a topic in the selection dialog box, and
click the "OK" pushbutton.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

310

To access context sensitive (f1) help

• Place the mouse pointer over the item for which you want help, and press the f1
keyboard key.

• Choose Help→On Item... from the pulldown menu in the top-level configuration
interface window. Notice that the mouse pointer changes to a question mark.
Move the question mark over the item for which you want help in the top-level
configuration interface window, and click the select mouse button.

If you are having trouble using the f1 key to obtain help, you may be able to use the
question mark obtained by the Help→On Item... pulldown. If the Help→On
Item... pulldown does not obtain the desired result, try the f1 key. The operation of
these two selections differs on different platforms.

In some dialog boxes, the question mark obtained by the Help→On Item...
pulldown may not obtain a help screen when you place it on a command name, but
the help screen may be obtained when you place the question mark over an input
field or pushbutton associated with the command name.

To exit the configuration interface

• Choose File→Exit from the pulldown menu in the top-level configuration interface
window (or type <CTRL>x).

This will close the top-level configuration interface window together with all of the
children of the top-level configuration interface window.

If configuration changes have not been stored to a file, a confirmation dialog box
appears, giving you the options of: storing, exiting without storing, or canceling the
exit.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

311

To load a configuration

• In the emulator/analyzer interface, choose File→Load→Emulator Config... from
the pulldown menu, and use the file selection dialog box to specify the
configuration file to be loaded.

• Using the command line, enter the load configuration <FILE> command.

This command loads previously created and stored configuration files. You cannot
load a configuration while the configuration interface is running.

Chapter 8: Configuring the Emulator
Using the Configuration Interface

312

Modifying the Monitor Setup

In order to modify the monitor setup, you must obtain the top-level Emulator
Configuration dialog box. Simply click on the Monitor Setup pushbutton. The
Monitor setup dialog box will appear.

This section shows you how to:

• Select the monitor type.

• Select the monitor filename.

• Select the monitor address.

• Select the monitor interrupt priority level.

• Select whether or not the emulator will terminate monitor bus cycles without
regard to the state of the target system.

• Select whether or not there will be a keep-alive function, and if there will be a
keep-alive function, select its address and function code, if desired.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

313

To select the monitor type

• Choose "Background", "Foreground (built-in)", Foreground (customized)", or
"None" for the "Monitor Type" configuration option.

Choosing "Background" specifies that the background monitor will be used with
the emulator. The background monitor is useful when you are first plugging into a
target system. It occupies no address space that might be used by your target
program. You cannot enable the MMU, use the processor caches, or perform dma
cycles when the background monitor is in use, or when your system is arbitrating
the bus. Also, when one of the routines of the background monitor is executing, the
emulator cannot service any target system interrupts, even NMI interrupts.

Choosing "Foreground (built-in)" specifies that the foreground monitor shipped
with your emulator will be used. A foreground monitor must be used when the
memory management unit or the caches of the MC68040 (or both) are enabled or
bus arbritration is performed. Also, the emulator can be configured to service
target system interrupts of any desired level during execution of foreground
monitor routines.

Choosing "Foreground (customized)" specifies that a custom foreground monitor
will be used. With this selection, you will need to specify the Monitor Filename in
this dialog box.

Choosing "None" specifies that no monitor will be used. This option is useful
when you are first connecting the emulator to a target system (refer to Chapter 18,
"Connecting the Emulator to a Target System"). Sometimes the task of connecting
an emulator to a target system can be complicated by characteristics of the
emulation monitor. For example, foreground monitor bus cycles are visible to the
target system. By selecting "None", you eliminate the question "am I having
trouble connecting to my target system because of something the monitor is doing?"

When you choose "None", you will be able to run the emulator from reset (if you
previously loaded a program), and you will be able to take a trace with the analyzer
to see what activity is being executed by your emulator. You will not be able to use
any of the other emulator capabilities and features (such as loading a program or
displaying memory). When your system is running successfully with the "None"
selection, then choose one of the other monitor options to see if your target system
will operate with the emulation monitor.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

314

To select the monitor filename

• Type in the name of the custom foreground monitor in the text entry area beside
"Monitor Filename".

The custom foreground monitor absolute file will be automatically loaded after
configuration is complete. The monitor must already be linked to the desired
location and should not be linked with any of your target programs.

The location for the monitor source file is: /usr/hp64000/monitor/fm64783.s.

The file format for the monitor MUST be HP64000 absolute format (file.X).

If using the HP 68030/68040 assembler/linker (B1465), use the -h option.

If using Microtec Research, Inc. assembler/linkers, use the -h option.

For other language systems, use the "HP 64000 Hosted Development System
Absolute File Translator" program.

No symbols are required for loading the custom foreground monitor.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

315

To select the monitor address

• Type the base address of the foreground monitor in the text entry field beside
"Monitor Address" in the dialog box.

Enter a hexadecimal address on a 4-Kbyte boundary (XXXXX000h).

If you are using a foreground monitor (either the built-in foreground monitor or a
custom foreground monitor), you must set the base address where the monitor will
be loaded.

The emulator loads the foreground monitor into the 4-Kbyte block of dual-port
emulation memory. It resets the memory map, and creates a map term at the
address you enter in this dialog box. You cannot delete or alter this map term by
using the map configuration commands. Instead, you must change the monitor
configuration using this Monitor Setup dialog box.

If the memory management feature of the MC68040 emulator is enabled, be sure
the foreground monitor is mapped in an area that is translated 1:1, and it is not
write-protected. Refer to the end of this chapter for instructions on how to map the
foreground monitor to appropriate address space.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

316

To select the monitor interrupt priority level

• Type in the desired interrupt priority level for your foreground monitor in the text
entry area beside "Interrupt Priority Level".

Enter a number from 0 to 7 in the text entry area. This is the interrupt priority level
that will be held off by the emulation monitor during monitor execution. Interrupts
having values higher than the number you enter here will be recognized by the
processor.

Set the interrupt priority level low enough to allow your target system to function
correctly, but high enough to avoid excessive interrupt processing. The default
value of 0 allows all target system interrupts to be recognized by the foreground
monitor.

The emulator uses a level 7, non-maskable interrupt to interrupt the target system
and break into the monitor. When the foreground monitor is not executing critical
code (such as monitor entry and exit), the foreground monitor will set the interrupt
priority mask to the value you enter beside "Interrupt Priority Level", or to the
interrupt level that was in effect before monitor entry, whichever is greater.

Example Suppose your target system has a disk device driver that uses interrupt level 5, and
the service routine must be run to prevent target system damage. To allow
interrupts of higher priority than level 4 to be serviced during foreground monitor
execution, enter 4 beside "Interrupt Priority Level". In this case, all interrupts with
values of 4 or less will be ignored when the foreground monitor is executing.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

317

To select whether or not the emulator will
terminate monitor bus cycles

• Choose "Yes" or "No" for the "Emulator Terminates Monitor Bus Cycles"
configuration option.

Choosing "Yes" specifies that the emulator will terminate foreground monitor
cycles using emulator-generated cycle termination signals. Cycle termination
signals generated by the target system during access to the foreground monitor,
including TEA, will be ignored.

Choosing "No" specifies that foreground monitor cycles will be terminated when
the target system TA, or TEA, or both signals are asserted.

This configuration item only applies to the map term assigned to the foreground
emulation monitor. If you choose "No", and the emulation monitor is in an address
range where the target system does not return TA or TEA, the emulator will stop.
If this happens, reset the emulation processor, and then choose "Yes" for this
configuration option.

Foreground monitor bus cycles are visible to the target system. If you choose
"Yes", your target system may operate erratically if it is not expecting the
emulation monitor bus cycles.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

318

To select if there will be a keep-alive function, its
address, and function code

• Choose "Yes" or "No" for the "Enable Keep Alive Function" configuration option
(available for use with the background monitor).

Choosing "Yes" specifies that a selected address will be read by the background
monitor periodically. You must also specify the address to be read, and the
function code used when reading that address, as follows:

• Choose "Super" or "User" for the "Keep Alive Function Code" configuration
option. This determines whether the supervisor function code or the user
function code will be used when the emulator reads the keep-alive address.

• Type in the keep-alive address in the text entry area beside "Keep Alive
Address". This address in target memory will be read periodically during
background monitor execution. The read accesses to the target memory
address can be used to avoid a timeout of a target system bus or a watchdog
timer during background monitor execution.

Choosing "No" specifies that there will be no keep-alive memory read cycles in
target memory during background monitor operation.

Chapter 8: Configuring the Emulator
Modifying the Monitor Setup

319

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), you must map the available ranges of memory so that the emulator knows
where to direct its accesses.

All memory ranges used by your programs must be specified in the memory map
before you load programs into memory.

Up to eight ranges of memory can be mapped, and the resolution of mapped ranges
is 256 bytes, that is, the memory ranges must begin on 256-byte boundaries
(numbers ending in 00h) and must end on 256-byte boundaries (numbers ending in
FFh).

Emulation memory is made available to the mapper in 256-byte blocks. When you
map an address range to emulation memory, at least one 256-byte block is assigned
to the range. When a block of emulation memory is assigned to a range, it is no
longer available, even though part of the block may be unused.

In order to map memory, you must first start the configuration interface and access
the "Memory Map" configuration section (refer to the previous "Using the
Configuration Interface" section).

Chapter 8: Configuring the Emulator
Mapping Memory

320

This section shows you how to:

• Add memory map entries.

• Modify memory map entries.

• Delete memory map entries.

• Characterize mapped and unmapped ranges.

• Specify whether or not read data will be inhibited from being loaded into the
caches during transactions in the associated memory range.

• Map memory ranges in which the emulator will terminate bus cycles without
regard to the state of the target system.

• Map memory ranges to be stored within the dual port memory.

Chapter 8: Configuring the Emulator
Mapping Memory

321

To add memory map entries

• Choose Map→Add New Entry from the pulldown menu in the memory map
window.

• Press and hold the select mouse button and choose Add New Entry from the popup
menu.

• Using the command line, enter the address range, memory type, and possibly an
emulator_terminates_bus_cycles, or transfer_cache_inhibit attribute, or both
attributes for each emulation memory range.

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the monitor
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if you choose "Yes" for the "Break processor on Write to
ROM" option in the "Emulator Configuration: General Items" dialog box.

RAM memory in the emulation or target system will be changed by processor
writes, even if that memory has been characterized as ROM.

You can include the transfer cache inhibit attribute with any memory range. If
included, no data will be loaded into either the instruction cache or data cache
during any transactions occuring in the associated memory range. This ensures that
all activity will appear on the emulation bus and be available for tracing with the
emulation-bus analyzer.

You can include the "Emulator Terminates Bus Cycles" attribute with any memory
range. If included, the emulator will terminate bus cycles without regard to the
state of the target system. This is useful in ranges where the TA, or TEA, or both
signals are not available from the target system. The danger of this option is that
the emulator may become out of sync with the target system if the target system
supplies these signals.

You can specify that a particular address range be loaded into the dual-port memory
if using of a background monitor in the Monitor Setup dialog box.

Chapter 8: Configuring the Emulator
Mapping Memory

322

The first two methods of mapping memory ranges give you the following dialog
box.

The starting address of
the range to be added.

The ending address of
the range to be added.

Specifies the increment
value for the "+" and
"-" buttons of the start
and end address fields.

Adds the
defined range
to the memory
map.

These pushbuttons may
be held down to repeat
the action.

Subtract or add the
address increment value.
The end address is
changed by the same
amount, moving the
block of memory.

Change only the end
address, thereby
changing the size of the
block of memory.

Multiply or divide the
increment value by 2.

Inactive in the
"Add" mode of
map entry.

Closes the
dialog box.

Specify if read data is
inhibited from being
loaded into the caches
in this range.

Specify if the emulator
terminates bus cysles in
this range without
waiting for the target
system.

Only available when
the background
monitor is in use.

Specifies type of
memory occupied by
this range.

Chapter 8: Configuring the Emulator
Mapping Memory

323

Examples Example 1: Suppose you’re using the emulator in-circuit, and there is a 12-byte I/O
port at 1c000 hex in your target system. You have ROM in your target system from
0 through ffff hex. Also, you want to use the dual-port emulation memory at 20000
hex. You could use the Memory Map dialog box to create the following three map
entries:

Start Address 1c000h, End Address 1c0ffh, Memory Type Target RAM
Start Address 0h, End Address 0ffffh , Memory Type Target ROM
Start Address 20000h, End Address 20fffh, Memory Type Emul RAM , Dual Port
Memory = Yes

Using the command line, you would enter:

1c000h thru 1c0ffh target ram
0 thru 0ffffh target rom
20000h thru 20fffh emulation ram dualport

Remember that the only way to make the dual-port emulation memory available for
your target program is to use the background monitor. When a foreground monitor
is in use, it occupies the dual-port emulation memory, by default.

Example 2: This second example shows the relationship between memory ranges
and the block sizes of memory. Suppose you have installed 256-Kbyte SRAM
memory modules in Memory slots 0 and 1 (called BANK 0 and BANK 1) on the
emulation probe. This makes four 64-Kbyte blocks and two 128-Kbyte blocks
available to the memory mapper. Then you enter the following map commands:

Start Address 0h, End Address 7fffh , Memory Type Emul RAM
Start Address 20000h, End Address 3f000h, Memory Type Emul RAM
Start Address 40000h, End Address 4ffffh , Memory Type Emul RAM
Start Address 50000h, End Address 500ffh, Memory Type Emul RAM
Map→Default Memory Type→Target RAM→Transfer Cache Inhibit ON

Using the command line, you would enter:

0 thru 7fffh emulation ram
20000h thru 3f000h emulation ram
40000h thru 4ffffh emulation ram
50000h thru 500ffh emulation ram
default target ram transfer_cache_inhibit

If you haven’t used the dual-port emulation RAM, the first map term that is small
enough to fit is assigned to that memory. In this example, that is the last term you

Chapter 8: Configuring the Emulator
Mapping Memory

324

defined (the range from 50000..500ff). The entire 4-Kbyte block is reserved though
you specified only a 256-byte range. Two 64-Kbyte blocks and one 128-Kbyte
block are used from the SRAM emulation memory on the probe, leaving two
64-Kbyte blocks and one 128-Kbyte block. One of the 64-Kbyte blocks is used for
the first map term, but 32 Kbytes of that block are unused and unavailable. The
third term uses the other 64-Kbyte block. The second term uses part of the
128-Kbyte block, leaving the rest unavailable.

Mapper resolution is independent of block allocation. In the above example, if you
had default guarded and your program accessed 8000h, the emulator would do a
guarded memory break.

To modify memory map entries

• Choose Map→Modify Entry from the pulldown menu in the memory map
window and select the entry number from the cascade menu.

• Position the mouse pointer over the entry you wish to modify. Press and hold the
select mouse button, and choose Modify Entry from the popup menu.

These commands open the same dialog box that is used for adding memory map
entries, except it lets you modify the current settings for the entry.

In order to modify an entry when using the command line, you must delete the
entry and add a new entry.

Chapter 8: Configuring the Emulator
Mapping Memory

325

Examples To modify a memory map entry using the popup menu:

Bring up the menu
and choose this item
to modify the
highlighted memory
map entry.

Use the Modify Map Entry dialog box (same as the Add New Map Entry dialog
box) to modify the entry. Click the "Modify" pushbutton to modify the selected
range in the memory map according to changes you make in the Modify Map Entry
dialog box.

Chapter 8: Configuring the Emulator
Mapping Memory

326

To delete memory map entries

• Choose Map→Delete Entry from the pulldown menu in the memory map window
and select the entry number from the cascade menu.

• Position the mouse pointer over the entry you wish to delete. Press and hold the
select mouse button and choose Delete Entry from the popup menu.

• Using the command line, enter the delete <ENTRY#> command.

Note that programs should be reloaded after deleting map terms. The memory
mapper may reassign blocks of emulation memory after the insertion or deletion of
map terms.

To characterize unmapped ranges

• Choose Map→Default Memory Type from the pulldown menu in the memory
map window and select the memory type from the cascade menu. If you choose
Target RAM or Target ROM, you must also choose Transfer Cache Inhibit
OFF or Transfer Cache Inhibit ON.

– If you choose Transfer Cache Inhibit OFF, transactions that are sent
to unmapped memory may also be loaded into the instruction cache,
data cache, or both caches.

– If you choose Transfer Cache Inhibit ON, no data that is sent to
unmapped memory will be written into the caches.

• Using the command line, enter the default <memory_type> command.

Unmapped memory ranges are treated as target system RAM by default.
Unmapped memory ranges cannot be characterized as emulation memory.

Chapter 8: Configuring the Emulator
Mapping Memory

327

To map memory ranges in which data is not
loaded into the caches

• Choose "Yes" or "No" for the "Transfer Cache Inhibit" configuration option in the
"Modify Map Entry" or "Add New Entry" dialog box.

Choosing "Yes" specifies that no data will be loaded into either the instruction
cache or data cache during any transactions occuring in the associated memory
range. This choice is useful when you need to have all transactions appear on the
external buses to allow the emulation-bus analyzer to capture complete traces of
processor activity.

Choosing "No" specifies that data will be loaded into either the instruction cache or
data cache, as applicable, during transactions occurring in the associated memory
range. This choice is useful when you need to have transactions completed in the
fastest and most efficient manner. Use of processor caches increases the processor
speed of execution.

To map memory in which the emulator will
terminate bus cycles

• Choose "Yes" or "No" for the "Emulator Terminates Bus Cycles" configuration
option in the "Modify Map Entry" or "Add New Entry" dialog box.

Choosing "Yes" causes the emulator to terminate bus cycles without regard to the
state of the target system. This is useful in ranges where the TA or TEA or both
signals from the target system are not available. The danger of including this
option is that the emulator may become out of sync with the target system if the
target system provides these signals.

Choosing "No" ensures that the timing of cycle termination signals will not cause
the emulator and target system to become out of sync. No emulation bus cycle will
be terminated until the TA or TEA signal is received from the target system.

Chapter 8: Configuring the Emulator
Mapping Memory

328

To map memory to be stored within the dual-port
memory

• Choose "Yes" or "No" for the "Dual Port Memory" configuration option in the
"Modify Map Entry" or "Add New Entry" dialog box (available only when using
the background monitor).

Choosing "Yes" specifies that the map term must be stored in the 4-Kbyte dual-port
emulation memory.

Choosing "No" specifies that the map term must be stored in either emulation
memory or target system memory, according to specifications made for its address
range in the memory map.

This block can also be mapped by specifying the dualport attribute after the map
address and memory type specification on the command line.

There is one 4-Kbyte block of dual-port emulation memory on the emulator probe.
(Dual-port means the emulation controller can access memory locations without
interfering with program execution). If you use a foreground monitor, the monitor
will be loaded into this space and you won’t be able to map this memory for any
other purpose.

If you specify an address range less than 4 Kbytes to be placed in the dual-port
memory, all 4 Kbytes of the dual-port memory will be allocated because that is the
minimum block size for that memory. If you specify a block size less than 4 Kbytes
and the dual-port memory is unmapped, the emulator will use that memory to more
closely match the requested address range to the block size.

Chapter 8: Configuring the Emulator
Mapping Memory

329

Configuring the Emulator General Items Screen

In order to configure the emulator pod, you must first start the configuration
interface and access the "General Items" configuration section (refer to "Using the
Configuration Interface" earlier in this chapter).

This section shows you how to:

• Configure items that affect operation of the emulation processor, such as:

– Enable/disable target system interrupts.

– Enable/disable the instruction and data caches.

– Enable/disable the memory management unit (MMU).

• Configure items that affect operation of the emulator, such as:

– Specify whether or not the bus clock speed is greater than 25 MHz.

– Restrict the emulator to real time runs.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

330

– Break from target program to monitor execution when the emulator
detects an attempt to write to a ROM address.

– Set the memory access size.

– Set the initial value of the stack pointer.

– Set the initial value of the program counter.

To enable/disable target system interrupts

• Choose "Yes" or "No" for the "Enable Target System Interrupts" configuration
option.

Choosing "Yes" allows target system interrupts to be received by the emulation
processor. This is useful to test whether your target system interrupt logic works
correctly after the interrupt service routines have been designed and the interrupt
vectors have been assigned.

Choosing "No" causes all target system interrupts to be ignored by the emulation
processor. You may want to disable target system interrupts if your target system
interrupt logic doesn’t work correctly or isn’t finished. Target system interrupts are
always ignored during execution of certain critical routines of the foreground
monitor, such as monitor entry and monitor exit, and are always ignored in the
background monitor.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

331

To enable/disable the instruction and data caches

• Choose "Yes" or "No" for the "Enable Instruction/Data Caches" configuration
option.

Choosing "Yes" allows the instruction and data caches to be enabled. With this
choice, the caches can still be disabled in selected memory ranges as specified
when mapping memory.

Choosing "No" causes the emulator to assert the CDIS signal to prevent
instructions and data from being loaded into the respective caches during target
program execution. This overrides any specifications you may make for individual
entries on the memory map.

When you disable the instruction and data caches, all activity appears on the
emulation processor buses where it can be monitored and captured by the
emulation-bus analyzer. When you allow the caches to be enabled, program
execution is faster, but only partial information is available to be traced by the
emulation-bus analyzer. This may cause confusing trace displays or failure to
trigger, especially if the code being analyzed is a small loop where all the
instructions and operands fit into cache and registers.

When you are more concerned about measuring processor performance, you should
enable the caches. If you are making analyzer measurements at the same time, you
may need to experiment to find suitable trigger combinations.

If you need to disable caching only for accesses to a specific memory block, enter
that as part of your specification when defining the corresponding memory map
term. This allows you to capture analysis information for specific memory ranges
without dramatically affecting overall system performance.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

332

To enable/disable the memory management unit
(MMU)

• Choose "Yes" or "No" for the "Enable Memory Management Unit" configuration
option.

Choosing "Yes" allows the MMU of the emulation processor to control placement
of the target program in physical memory. The target system will be able to enable
and disable the MMU during program execution by using the MDIS signal.

Choosing "No" causes the emulator to disable the MMU of the emulation processor
by asserting the MDIS signal.

The MC68040 MMU can manage a program that occupies a large space in logical
(virtual) memory while running it from a much smaller space in physical memory.
When you operate the emulation processor with the MMU enabled, you must
ensure that the foreground monitor is contained in memory space that:

• is not write-protected.

• is mapped 1:1 (logical address = physical address). The reason that this
mapping is important is that the MMU may be enabled or disabled at any time
during program execution; whether or not the MMU is enabled, the emulator
must be able to enter the foreground monitor to provide emulation features.
Refer to the section titled "Mapping The Foreground Monitor For Use With
The MC68040 MMUs" later in this chapter.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

333

To specify whether the clock speed of the
emulation bus is greater than 25 MHz

• Choose "Yes" or "No" for the "Bus Clock Speed >25MHz" configuration option.

Choosing "Yes" causes the emulator to add one wait state to each synchronous and
burst memory access.

Choosing "No" allows all synchronous and burst accesses to be completed at full
processor speed with no wait states.

When the external bus clock (BCLK) is operating at a frequency above 25 MHz,
this question must be answered "Yes".

When operating above 25 MHz, the target system is responsible for adding a wait
state to its accesses. The emulator will not attempt to add a wait state to target
accessses, other than to ignore cycle terminations until a wait state has passed. The
target system is responsible for making sure cycle terminations and data are valid
after the wait state.

The 4-Mbyte memory modules are not as fast as the 256-Kbyte and 1-Mbyte
memory modules. The emulator always adds one wait state to accessess to
emulation memory when it detects the presence of any 4-Mbyte memory modules
on the emulation probe.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

334

To restrict the emulator to real-time runs

• Choose "Yes" or "No" for the "Restrict to Real Time" configuration option.

Choosing "Yes" causes the emulator to offer only a limited set of emulation
features: reset, break, run, and step.

Choosing "No" allows the emulator to offer its complete emulation feature set at
any time during execution of your target program.

CAUTION If your target system could be damaged because the emulator is interrupted while
running critical routines, choose "Yes" for this configuration option.

The emulator uses the emulation monitor program to implement some features,
such as displaying processor registers. When the emulation processor executes a
monitor routine, it is not executing your target program. This may cause problems
in target systems that need real-time program execution (uninterrupted execution of
the target program).

When you choose "Yes" for this configuration item, you must do an execution
break in order to display registers or display target memory, and you will not be
able to use simulated IO.

While this configuration item affects which commands will be accepted, it does not
affect access breakpoints, such as break on write to ROM, break on analyzer
trigger, or break on access to guarded memory. It also doesn’t affect the emulator’s
response to execution breakpoints.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

335

To enable/disable breaks on writes to ROM

• Choose "Yes" or "No" for the "Break on write to ROM" configuration option.

Choosing "Yes" enables breaks on writes to ROM with the following results:

• The emulator will stop executing the target program and begin execution in the
emulation monitor whenever the target program attempts to write to a memory
region mapped as ROM.

• The emulator will modify the content of RAM memory that is mapped as
ROM, even when write to ROM break is enabled.

Choosing "No" disables breaks on writes to ROM. The emulator will continue to
execute the target program even when it detects an attempt to write to an address
mapped as ROM. Emulation writes will modify the content of RAM memory that
has been mapped as ROM.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

336

To specify the memory access size

• Choose "Any", "Bytes", "Words", or "Longs" for the "Memory Access Size"
configuration option.

Choose "Any" if you want the emulator to select the optimum access size for the
transaction to be completed.

Choose "Bytes" if the emulator should make only 8-bit accesses to memory.

Choose "Words" if the emulator should make only 16-bit accesses to memory.

Choose "Longs" if the emulator should make only 32-bit accesses to memory.

When accessing memory locations, the access mode specifies the type of
microprocessor cycles that are used to read or write the value(s). By default, "Any"
is selected. In the "Any" mode, long-word accesses are made to memory, except
when accessing an address not on a long-word boundary, or when only one byte or
one word remains to be accessed. In these cases, the appropriate memory access
mode ("Bytes" or "Words") will be used.

If you choose the "Bytes" access mode, and a target system location is modified to
contain the value 12345678H, byte instructions will be used to write the byte values
12H, 34H, 56H, and 78H to target system memory.

If set to "Any", the size you include in your "display memory" or "modify memory"
command will be used for the access. It will temporarily override the "Any"
designation for the access. If set to "Bytes", "Words", or "Longs", the size selected
in your "display memory" or "modify memory" commands will have no effect on
the actual memory access; it will be what you specified for the memory access size.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

337

To specify the initial value of the stack pointer

• Type in the address that is the initial value for the interrupt stack pointer in the text
entry area beside "Interrupt Stack Pointer Value".

Enter a 32-bit hexadecimal address for the initial value of the ISP. Normally, this
value is the same as the value at memory address 0. The default value is 1H. This
in an invalid value. It is given as the default to remind you to enter the correct
hexadecimal address for the ISP before using the emulator.

Normally, if you run the emulator from reset, the processor fetches the value at
offset 0 from the vector table, and loads it into the interrupt stack pointer. There are
cases where the interrupt stack pointer cannot be fetched from the reset vector table.
For example, if you reset the emulator, break to the emulation monitor, and then
run the emulator from the monitor, the stack pointer value will not be read from the
normal location. In these cases, the stack pointer value will be read from the value
you enter here.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

338

To specify the initial value of the program counter

• Type in the address that is the initial value for the program counter in the text entry
area beside "Initial Program Counter Value".

Enter a 32-bit hexadecimal address for the initial value of the program counter.
Normally, this value is the same as the value at memory address 4. The default
value is 0FFFFFFFFH. This in an invalid value. It is given as the default to remind
you to enter the correct hexadecimal address for the program counter before using
the emulator.

Normally, if you run the emulator from reset, the processor fetches the value at
offset 4 from the vector table, and loads it into the program counter. There are
cases where the program counter value cannot be fetched from the reset vector
table. For example, if you reset the emulator, break to the emulation monitor, and
then run the emulator from the monitor, the program counter value will not be read
from the normal location. In these cases, the program counter value will be read
from the value you enter here.

Chapter 8: Configuring the Emulator
Configuring the Emulator General Items Screen

339

Setting the Trace Options

In order to set the trace options, you must first start the configuration interface and
access the "Trace Options" configuration section (refer to the previous "Using the
Configuration Interface" section).

This section shows you how to:

• Enable tracing emulation-bus activity in foreground address space, background
address space (tracing execution of the background monitor), or both address
spaces. This lets you select whether to include background monitor execution
in analyzer traces when using the background monitor.

• Identify the data rate of your emulation system for the emulation-bus analyzer.
The capabilites of the 1K analyzer differ with different data rates. The full
capabilites of the deep analyzer are available at all data rates.

Chapter 8: Configuring the Emulator
Setting the Trace Options

340

To include/exclude background monitor
execution in the trace

• Choose "Foreground", "Background", or "Both" for the "Trace Mode (Type of
Cycles)" configuration item.

Choosing "Foreground" specifies that the analyzer trace only foreground cycles,
including execution of your target program and of the foreground monitor, if you
are using a foreground monitor. In this mode, the analyzer will not trace execution
of a background monitor.

Choosing "Background" specifies that the analyzer will trace only background
cycles. This is rarely useful because it excludes target program execution.

Choosing "Both" specifies that the analyzer trace both foreground and background
cycles. This option allows all emulation processor cycles to be viewed in the trace
display when you are using a background monitor.

To identify the data rate of your emulation
system for the 1K analyzer

• If you are using the deep analyzer with your emulator, you can ignore this choice.
The deep analyzer will provide its full capabilities regardless of the choice made
here.

• If you are using the 1K analyzer, choose "Slow", "Fast", or "Very Fast" for the
"Analyzer Speed" configuration item.

Choosing "Slow" specifies that the burst data rate of the traced activity is not more
than 16.67 MHz. The 1K analyzer can perform counts of selected states or counts
of time between states when the traced data rate is "Slow".

Choosing "Fast" specifies that the burst data rate of the traced activity is between
16.67 and 20.00 MHz. The 1K analyzer can perform counts of selected states when

Chapter 8: Configuring the Emulator
Setting the Trace Options

341

the traced data rate is "Fast". It cannot perform counts of time between the traced
states.

Choosing "Very Fast" specifies that the burst data rate of the traced activity is
greater than 20.00 MHz. The 1K analyzer cannot perform any counts when the
traced data rate is " Very Fast".

If burst cycles are not being used, set the "Analyzer Speed" to "Slow".

The MC68040 analyzer clock is set to "Very Fast" by default. The 1K analyzer can
capture all types of bus cycles correctly up to the maximum clock rate of 40 MHz,
but cannot correctly count states or time at higher speeds for certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle is performed.
The analyzer clock rate for burst cycles is given by the equation:

Analyzer Clock Rate =
Processor Clock Rate (BCLK)

(1 + number of wait states)

To determine the correct selection, calculate the maximum data rate by using the
above equation. Remember that the emulator requires one wait state for all accesses
when the external clock is greater than or equal to 25 MHz. Then choose the data
rate option according to the data rate.

If no burst cycles are performed, the 1K analyzer clock speed can be set "Slow".

Chapter 8: Configuring the Emulator
Setting the Trace Options

342

Modifying the Simulated IO Configuration Items

In order to modify the simulated I/O configuration items, you must first start the
top-level configuration interface and select the Simulated IO pushbutton in the
dialog box. The Simulated IO dialog box will appear on screen. Refer to the
Simulated I/O User’s Guide for details on configuring and using simulated I/O.

Chapter 8: Configuring the Emulator
Modifying the Simulated IO Configuration Items

343

Modifying the Interactive Measurement
Specification Configuration Items

In order to modify the interactive measurement configuration items, you must first
start the configuration interface. In the top-level configuration interface dialog box,
choose "Interactive Measurement Specification" under "Analyzer Configuration
Sections".

This section shows you how to:

• Select whether or not the card cage rear panel BNC is connected to the Trig1
or Trig2 or both signals of the emulation-bus analyzer.

• Select whether or not the coordinated measurement bus connection on the card
cage rear panel is connected to the Trig1 or Trig2 or both signals of the
emulation-bus analyzer.

• Select whether or not the emulator will allow a signal on Trig2 to initiate an
emulation break.

• Select whether or not the emulation-bus analyzer will ignore the Trig2 line of
the coordinated measurement bus.

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

344

Refer to Chapter 6, "Making Coordinated Measurements", in this manual for
further details on the use of signals shown in the Interactive Measurement
Specification dialog box.

To select whether the card cage rear panel BNC
is connected to the Trig1 or Trig2 or both signals

• Choose "Drive", "Receive", "Neither", or "Both" for the "BNC on Trig1" or "BNC
on Trig2" or both configuration items.

Choosing "Drive" specifies that the signal connected to the BNC will be driven
onto the Trig1 or Trig2 or both lines of the emulation-bus analyzer.

Choosing "Receive" specifies that the Trig1 or Trig2 or both signals from the
emulation-bus analyzer will be available to be received by any connection to the
BNC.

Choosing "Neither" specifies that the BNC is isolated from the Trig1 or Trig2 or
both lines of the emulation-bus analyzer.

Choosing "Both" specifies that the BNC can both "Drive" and "Receive" the Trig1
or Trig2 or both signals of the emulation-bus analyzer.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trig1 and Trig2 trigger signals.

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

345

To select whether the coordinated measurement
bus is connected to the Trig1 or Trig2 or both
signals

• Choose "Drive", "Receive", "Neither", or "Both" for the "CMBT on Trig1" or
"CMBT on Trig2" or both configuration items.

Choosing "Drive" specifies that the signal connected to the coordinated
measurement bus connection will be driven onto the Trig1 or Trig2 or both lines of
the emulation-bus analyzer.

Choosing "Receive" specifies that the Trig1 or Trig2 or both signals from the
emulation-bus analyzer will be available to be received by any connection to the
coordinated measurement bus.

Choosing "Neither" specifies that the coordinated measurement bus is isolated from
the Trig1 or Trig2 or both lines of the emulation-bus analyzer.

Choosing "Both" specifies that the coordinated measurement bus can both "Drive"
and "Receive" the Trig1 or Trig2 or both signals of the emulation-bus analyzer.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trig1 and Trig2 trigger signals.

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

346

To select whether the emulator will allow a signal
on Trig2 to initiate a break from target program
execution

• Choose "Yes" or "No" for the "Enable Break Receive Trig2" specification.

Choosing "Yes" specifies that a trigger signal supplied on the Trig2 line will be
supplied to the emulator where it can be used to initiate an emulation break from
execution of the target program and begin execution in the emulation monitor.

Choosing "No" specifies that no emulation break will occur in response to any
trigger signal on Trig2.

Use this selection if you intend to cause an emulation break in response to an event
found by a device connected to the card cage rear panel BNC. The emulator
always receives Trig1 from the emulation-bus analyzer; Trig1 can be used to cause
a break from execution of the target program to the monitor when the
emulation-bus analyzer detects a trigger condition during a trace.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trig1 and Trig2 trigger signals.

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

347

To select whether or not the emulation-bus
analyzer will operate with, or ignore, the Trig2
line of the coordinated measurement bus.

• Choose "Drive", "Receive", or "Neither" for the "Analyzer on Trig2" specification.

Choosing "Drive" specifies that the emulation-bus analyzer will drive a trigger
signal on the Trig2 line of the coordinated measurement bus when it recognizes its
trigger condition during a trace.

Choosing "Receive" specifies that the emulation-bus analyzer will receive the
signal on the Trig2 line of the coordinated measurement bus when it is supplied,
and it will mark the state that it is capturing as the trigger state at the instant when
the Trig2 signal is detected.

Choosing "Neither" specifies that the emulation-bus analyzer will ignore the Trig2
line of the coordinated measurement bus.

Refer to Chapter 16, "Specifications and Characteristics", in this manual for the
electrical specifications of the Trig1 and Trig2 trigger signals.

Chapter 8: Configuring the Emulator
Modifying the Interactive Measurement Specification Configuration Items

348

Providing MMU Address Translation for the
Foreground Monitor

When using the memory management unit (MMU) of the MC68040, the target
system must provide the proper address translation for the foreground monitor. To
be able to do this, you will need to understand your target system’s physical
memory map and MMU address translation structure. You may need to modify
your mapping scheme or some of its mapping protections.

In order for the monitor to operate after the MMU is turned on, the target system
must provide 1:1 address translation (logical address = physical address) for the
block of memory occupied by the monitor. The foreground monitor will reside in a
4-Kbyte block of emulation memory corresponding to a single page in the MMU.
This memory can be mapped to begin on any 4-Kbyte address boundary. Simply
specify an address ending in 000h when you answer the monitor address question
when you set up the emulation configuration.

For example, if the monitor is located at logical address 0ffff1000h, then the MMU
must translate that address to physical address 0ffff1000h, logical address
0ffff1004h to physical address 0ffff1004h, etc.

Do not write-protect the address range occupied by the foreground monitor.

There are two ways to provide the proper address translation for the memory space
occupied by the foreground monitor:

• Locate the foreground monitor in a block of memory that is transparently
translated via ITTx and DTTx transparent translation registers (TTRs). The
monitor contains both code and data so two TTRs are needed to provide
translations: one for instructions, and the other for data. When the MMU
processes translations, it first compares the logical address with the parameters
of the TTRs. If it finds a match, the MMU uses the logical address as the
physical address for the access (obtaining the needed 1:1 translation).

The minimum block size that can be transparently translated by the TTRs is 16
Mbytes. If your target system already sets one or both data and instruction
TTRs for supervisor, or both supervisor and user, access and no
write-protection, then you may be able to find an unused 4-Kbyte block within
this 16-Mbyte range where the monitor can reside.

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

349

If your target system does not use the TTRs, then you may want to modify
your MMU boot code to configure an instruction and data TTR specifically for
the monitor.

Example This example shows how to modify boot code to use a pair of TTRs. Assume
your target system does not access any physical addresses in the 16-Mbyte
range 02000000..02ffffffh, and DTT0/ITT0 are unused. By locating the
monitor at address 02000000 and adding the following code fragment to your
boot code, you should be able to break into the monitor while the MMU is
turned on:

 * configure ITT0/DTT0 for emulation monitor
 MOVE.L #$0200C000,D0
 MOVEC D0,ITT0
 MOVEC D0,DTT0

Without these transparent translations for the monitor, the MMU will probably
generate an access fault when you attempt to break into the monitor. The
access fault would occur because addresses in the 02000000 range would have
no valid translations (they would be on a non-resident page).

If you cannot modify your boot code, you may be able to use an execution
breakpoint to break into the monitor before the MMU is enabled and use the
monitor to configure the TTRs. Do this only as a last resort because the
MC68040 processor automatically disables all TTRs whenever an emulation or
target reset occurs (and they must be reinitialized each time).

• The second way to provide proper address translation for the foreground
monitor is to locate the monitor within a page that is controlled by the MMU
address translation tables; one that is always resident, writeable, supervisor
accessible, and translated 1:1. The monitor occupies one 4-Kbyte page of
emulation memory. It will be stored in the 4-Kbyte range of the dual-port
memory.

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

350

Locating the Foreground Monitor using the MMU
Address Translation Tables

Locate the foreground monitor at a specific page address and add the proper
address translation for this page in your supervisor address translation tables. The
minimum page size is 4 Kbytes so the monitor only requires a single translation.
The page that contains the foreground monitor must always be resident, translated
1:1 (logical address = physical address), and never be write-protected.

The most direct way to do this is to modify the address translation tables in your
source code, rebuild your executable file, and download the executable into RAM,
or reprogram the executable into ROM. For systems that use an operating system
to manage dynamic translation tables in RAM, the page allocated to the monitor
must not be allowed to be swapped out by the operating system. This may require
that the page selected for the monitor reside in unused space within the operating
system (assuming the operating system is translated 1:1). The easiest way to create
unused space is to globally define an 8-Kbyte array of data that is never referenced
by your software. After rebuilding your operating system software, refer to the
linker symbol map file to determine the address range of this array. Use the lowest
address that resides on a 4-Kbyte boundary within this range as the starting address
for the monitor.

As a last resort, if your target system software cannot be rebuilt, you can use the
emulator to modify your translation tables directly.

The emulator provides a command to display individual address translations in
detail, including address, value, and mnemonic information about each descriptor
from the translation tables. You may be able to provide the proper address
translation for the monitor by simply modifying a single descriptor (long word) to
convert an invalid page into a resident page.

If the translation tables are located in ROM, you will need to copy them into
emulation memory before you attempt to modify them. This is done by storing all
or part of your ROM to a file, and then mapping emulation memory over the ROM
address range and reloading the file.

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the Foreground Monitor

351

352

9

Solving Problems

What to do when the emulator doesn’t behave as expected

353

Sometime during your use of the emulator, you’ll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these more complex problems.

Consider the following sources of information in addition to the specific problems
discussed in this chapter:

• Look at the error log. Sometimes a problem will cause several error messages to be
generated. Only the last error message will be shown on the status line. You can
see the last 100 error messages by viewing the error log. Refer to Chapter 3,
"Using the Emulator/Analyzer Interface", for details of how to display the error log.

• Look at the event log. Changes in status of the emulator/analyzer may cause
unexpected results. To see a list of the last 100 events that affected the status of the
emulator/analyzer, view the event log. Refer to Chapter 3, "Using the
Emulator/Analyzer Interface", for details of how to display the event log.

• Look at the present status of the emulator/analyzer to see if it will suggest the cause
of your problems. Refer to Chapter 3, "Using the Emulator/Analyzer Interface", for
details of how to display emulator/analyzer status.

If the emulator appears to be malfunctioning

Check to make sure that the cables connecting the Emulation Control Board to the
Emulation Probe are connected correctly. Refer to Chapter 19, "Installation and
Service", in this manual for details.

Run the performance verification procedure as described in Chapter 19,
"Installation and Service", of this manual. If the emulator fails this test, contact
your Hewlett-Packard representative.

If the emulator passes the performance verification procedure, look for other
reasons for the problem. Performance Verification is a thorough test, but it cannot
find every hardware failure in the emulator. It is a good indication that the
emulator is functioning correctly, but if you are still convinced the emulator is
malfunctioning, contact your local Hewlett-Packard representative.

Chapter 9: Solving Problems
If the emulator appears to be malfunctioning

354

If the trace listing opcode column contains only
the words "dma long write (retry)" repeatedly

Check to see if the internal ribbon cable that connects the last sixteen channels of
the 80-channel internal analyzer to the HP 64783 emulator control board is missing.
If it is, locate the supplied ribbon cable and connect one end to the slot in the
analyzer board and the other end to the slot in the 68040 control board. Refer to
Chapter 19, "Installation and Service", in this manual to see the proper location of
this cable.

If the analyzer fails to trigger on a program
address

Check to make sure that the program address is a long-word address (an address
ending in 0, 4, 8, or C hex). The MC68040 fetches instructions on long-word
addresses. Other instruction addresses never appear on the processor bus, and
therefore are never seen by the analyzer. Modify the trigger address so that the two
least significant binary digits of your trigger address are zeroes. For example, to
trigger a trace on address 2316H, specify your trigger to occur on address 2314H.
Note that this only applies to instruction fetches; data reads and writes are made
directly to the destination address, regardless of whether it is a long-word address
or not.

If triggering on the occurrence of a program symbol, the above can be achieved by
including the long_aligned token in your trigger command.

Chapter 9: Solving Problems
If the trace listing opcode column contains only the words "dma long write (retry)" repeatedly

355

If the analyzer triggers on a program address
when it should not

Check to see if the analyzer is triggering on an instruction prefetch. The analyzer
cannot distinguish between prefetch and execution because the processor does not
provide that information. Usually your actual trigger address is within 16 words of
the address where trigger is occurring.

Try to pad the program code with NOP instructions to move the trigger address
away from the other code so that it won’t be prefetched until it is time to trigger.

You may be able to insert a write instruction to a meaningless variable in your code
immediately before the trigger address. Then you can trigger on a write to the
address of the meaningless variable. Write transactions never appear in instruction
prefetches.

If trace disassembly appears to be partially
incorrect

Check to see if the analyzer began disassembly of the trace on a long-word
boundary but the instruction started on the low word within the long word. This
will make disassembly incorrect. You can start disassembly on the low word
within the long word by use of display trace disassemble_from_line_number
<trace list line number> low_word.

If the trace list seems correct for a few states after disassembly starts, and then it
seems incorrect, restart disassembly of the trace at the low word where disassembly
first becomes incorrect display trace disassemble_from_line_number <trace list
line number> low_word.

If an instruction seems to have incorrect data associated with it, you can read down
the trace list to see if you can find correct data for the instruction on another line.
You can cause the disassembler to realign the instruction with the correct data by

Chapter 9: Solving Problems
If the analyzer triggers on a program address when it should not

356

entering a command like display trace disassemble_from_line_number <trace
list line number> align_data_from_line <trace list line containing data>.

If there are unexplained states in the trace list

Check that the sequence, storage and trigger specifications are set up to exclude the
states you don’t need.

Try using the disassemble_from_line_number <LINE#> align_data_from_line
<STATE#> option to the display trace command to inform the dequeuer which
operand state belongs with the first instruction state.

Try using display trace dequeueing on.

Try using the disassemble_from_line_number <LINE#> low_word option to the
display trace command to begin disassembly from the low word of the starting
state, instead of the high word.

Check to see if instruction or operand accesses in the range covered by the trace
could be filled from cache memory. If so, these cycles won’t appear in the trace list,
which will confuse the disassembler. Either disable the cache memory entirely or
disable caching for those address ranges by adding the tci (transfer cache inhibit)
attribute to those ranges in the memory map. (See Chapter 8, "Configuring the
Emulator.")

Chapter 9: Solving Problems
If there are unexplained states in the trace list

357

If you see negative time or negative states in the
trace list

If counter overflow occurs during a deep analyzer trace measurement, you may see
a count of negative time or negative states in the trace list. This is a normal
condition. It indicates that the counter value stored with the reference state was
greater than the counter value stored with the present state. In absolute time counts,
negative times will continue to be seen until a state is captured whose counter value
is greater than the trigger state counter value. In relative time counts, negative time
should only be seen beside the first state captured after the counter overflows.

If the analyzer won’t trigger

Instruction fetches from cache memory aren’t visible to the analyzer. You can
disable the cache while using the analyzer by answering no to the configuration
question “Enable the 68040 instruction and data cache?” (Use the modify
configuration command to access this configuration question.) Reenable the cache
to improve performance when you’re finished using the analyzer.

The analyzer can be configured to trace background monitor execution, foreground
monitor and target program execution, or both background and foreground
operations. If you trace only background monitor execution, the analyzer will not
see any foreground cycles and will not trigger the trace. (Use the modify
configuration command to access this configuration question.)

The MC68040 emulator only fetches instructions on long word boundaries (least
significant hex digit of address is 0, 4, 8, or C). However, program labels can be
aligned on word boundaries between long word boundaries. If you try to trace on a
label located on a non-long-word boundary, the emulation-bus analyzer will never
trigger because the address will never appear on the address bus. To mask an
address so that it is on a long word boundary, use the long_aligned keyword with
trace specifications.

Chapter 9: Solving Problems
If you see negative time or negative states in the trace list

358

If the emulator won’t work in a target system

Ensure that the probe is inserted into the target system in the correct manner—the
pins should be lined up correctly.

If you are using spacers to connect the emulator probe to the target system, make
sure that the spacers are correctly connected.

The emulator uses the clock from the target system. Unsupported or improperly
configured clock speeds will affect emulator performance. (Use the modify
configuration command to access this configuration question.)

The emulator must recognize the target system’s clock signal to function correctly.
Power up the emulator and then apply power to the target system.

Check to see that the signal timing specifications of your target system match the
specifications in Chapter 16, "Specifications and Characteristics."

If you see multiple guarded memory accesses

Check the stack pointer value. If it points to guarded memory, you will see multiple
guarded memory accesses each time you press the <Enter> key (to get a new
prompt). Reset the emulator and set the stack pointer to a correct value.

Chapter 9: Solving Problems
If the emulator won’t work in a target system

359

If you suspect that the emulator is broken

1 Shut off power to the target system first, and then the Card Cage.

2 Disconnect the emulator from your target system.

3 Connect the emulator to the demo board. Also connect the power cable from the
emulator to the demo board and connect the reset flying lead. (See Chapter 19,
"Installation and Service".)

4 Apply power to the Card Cage.

5 Run performance verification by entering the commands:

display pod_command
pod_command "pv 1"

Note that the emulator/analyzer interface will report an I/O error because the pv
command initializes the emulator. You will need to enter the end release_system
command to exit the emulator/analyzer interface.

If either the emulator or analyzer fail the performance verification, check the
installation of those modules. See Chapter 19, "Installation and Service", for
information on installation and an explanation of the performance verification
software. If the installation is correct, contact your local HP Sales Office for
assistance.

Chapter 9: Solving Problems
If you suspect that the emulator is broken

360

If you have trouble mapping memory

The emulator uses a best fit algorithm to assign memory blocks to map requests.
Because the memory block sizes available depend on the emulation memory
module installations and the use of the dual-port memory, it’s possible that a
256-byte map request may use 512 Kbytes. (The map term will be only 256 bytes.)
Most systems won’t have such differences between memory block size
requirements and available memory. However, certain emulation memory module
installations will aggravate the problem.

Also, use of the dual-port memory is controlled first by monitor selection and next
by explicit selection of a dual-port term in the map. If you choose a foreground
monitor, the dual-port memory block is reserved for the monitor. If you choose a
background monitor, and don’t explicitly map a term with the dp attribute, the
dual-port memory may be used to satisfy any map request. For example, if you
request a 256-byte map term and this memory block is available, it will be used to
satisfy the request because it is closest to the needed size. Or, if you request a term
that is slightly larger than another available block, the dual-port memory will be
used with another map term to satisfy the request. (For example, a 260-Kbyte
request may use one 256-Kbyte block and the 4-Kbyte dual-port memory.)

Refer to the section “Mapping Memory” in Chapter 8, "Configuring the Emulator",
for more information on memory allocation.

If emulation memory behavior is erratic

Check to see if you have installed HP 64171A or HP 64171B memory modules on
the emulation probe board. These memory modules are too slow to work with the
MC68040 emulator. Use HP 64172A, HP 64172B, or HP 64173A memory
modules.

Chapter 9: Solving Problems
If you have trouble mapping memory

361

If you’re having problems with DMA

Check to make sure that your DMA process doesn’t access memory ranges mapped
to emulation ram or emulation rom. DMA to emulation memory is not supported.

If you’re having problems with emulation reset

Connect the reset flying lead to some point in your target system that distributes the
reset signal to components that need to be reset when the processor is reset. This
will make sure that all critical components in your target system are reset by the
emulator. Suppose your system reset circuit drives several critical system
components as well as the processor. Suppose also that the critical components are
memory-mapping circuits that locate ROM containing the vector table at address
zero for startup, then move it to a high address range after system initialization. An
emulator reset cannot drive your reset line directly. Therefore, an attempt to run
after emulation reset will fail because the vector table is not located in the correct
place. Use the target reset to reinitialize memory or use a run command instead of a
run from reset command. For further information, refer to Chapter 18,
"Connecting the Emulator to a Target System".

Chapter 9: Solving Problems
If you’re having problems with DMA

362

If the deMMUer runs out of resources during the
loading process

Check the physical address ranges that will be reverse translated by the present
setup of the deMMUer. Enter load demmuer verbose to see a list of those
physical address ranges. If all of the physical spaces where you have code under
development are listed, ignore the "out of resources" message.

Check to ensure that you have placed sufficient restrictions in the MMU mapping
paths to prevent reverse translating physical address space where you have no
memory.

Check your emulation memory map to make sure you have entries to support each
of the address spaces where you have code under development. Make sure those
spaces are no larger than they need to be to accommodate your program code.

Check if you are using both root pointers in your memory mapping scheme. The
deMMUer may have run out of resources for only one of the root pointers.

Read "Using the deMMUer" in Chapter 10, "Using Memory Management", for
ways to make more efficient use of deMMUer resources.

Chapter 9: Solving Problems
If the deMMUer runs out of resources during the loading process

363

If verbose mode shows less than eight mappings
but the deMMUer is "out of resources"

Check if you are using both root pointers in your memory mapping scheme? The
deMMUer may have run out of resources for only one of the root pointers.

Read "Using the deMMUer" in Chapter 10, "Using Memory Management", to
understand how deMMUer resources are allocated when using both root pointers
and separate mappings.

If you only see physical memory addresses in the
analyzer measurement results

Check to see if you enabled the deMMUer with the command: set demmuer on.

Check to see if you loaded the deMMUer with the information needed to reverse
translations made by the MMU with the command: load demmuer verbose.

Read "Using the deMMUer" in Chapter 10, "Using Memory Management", to
understand how the deMMUer selects physical address ranges to reverse translate
for the analyzer.

Chapter 9: Solving Problems
If verbose mode shows less than eight mappings but the deMMUer is "out of resources"

364

If the deMMUer is loaded but you still get
physical addresses for some of your address
space

Some physical accesses are normal, especially accesses to the MMU tables.

Check to see which physical memory spaces are being reverse translated by the
deMMUer. Enter the load demmuer verbose command to see a list of the physical
address spaces that will be deMMUed.

Check the setup of the MMU mapping tables. Make sure unused address spaces are
marked with invalid descriptors in the mapping tables.

Check the emulation memory map. Make sure you have allocated only the memory
spaces needed to accommodate code you are developing in your map. Make sure
you have mapped the smallest spaces that you can for the code you are developing.

Check that the MMU had the setup you wanted to analyze when you loaded the
deMMUer. If it was managing memory for some other MMU setup, break to the
monitor and issue the load demmuer command again.

Check to see if there was a context change in the MMU during execution of your
program. If there was, the content of the root pointer may have changed for
execution of the new context. The deMMUer tables were set up to reverse translate
the MMU tables under the root pointer values that existed when you entered the
load demuer command. If those root pointer values change (pointing to other
translation tables), there is no way to automatically update the deMMUer. It will
continue to provide reverse translations for the setup that existed at the time you
issued the load demmuer command. Issue the load demmuer command again.

Read "Using the deMMUer" in Chapter 10, "Using Memory Management", to
understand how the deMMUer selects the physical addresses it will translate.

Chapter 9: Solving Problems
If the deMMUer is loaded but you still get physical addresses for some of your address space

365

If you can’t break into the monitor after you
enable the MMU

Enter the commands: reset, and then break. If your MC68040 is now running in
the monitor, look at your MMU tables or the transparent translation register that
maintains 1:1 mapping for your foreground monitor. The mapping has failed.
Modify your MMU tables or the transparent translation register to obtain the 1:1
mapping for the address space occupied by the foreground monitor.

Refer to the end of Chapter 10, "Using Memory Management", for a detailed
example that discusses how to solve a "can’t break into monitor" problem.

If If the target system exhibits unexpected behavior
after executing a breakpoint

Normally when a software breakpoint instruction (BKPT) is executed, the
emulation processor generates a breakpoint acknowledge cycle as part of the
instruction. The emulator terminates the breakpoint acknowledge cycle and
initiates a transition into the monitor. Some target systems cannot tolerate this
behavior; they exhibit unexpected activity. When using such a target system,
configure the emulator to wait for the target system to terminate breakpoint
acknowledge cycles.

To configure the emulator to wait for the breakpoint acknowledge cycle to be
terminated by the target system, enter the command Settings→Pod Command
Keyboard. On the command line, enter the terminal interface command cf
bplock=en. Then press the suspend softkey. With this selection, the target
system is responsible for terminating breakpoint acknowledge cycles by asserting
TA or TEA . If the target system fails to provide the required cycle termination
signal, the processor will remain in a wait state indefinitely. Make sure your target
system provides the required cycle termination signal.

Emulators with serial prefix numbers below 3343A may not support this feature
even though they may appear to accept the bplock configuration item.

Chapter 9: Solving Problems
If you can’t break into the monitor after you enable the MMU

366

Part 3

Reference

367

Reference

In This Part

This part provides detailed information on aspects of using the Graphical User
Interface and the Softkey Interface for the HP 64783 product.

Chapter 10, "Using Memory Management", shows how to use the resources of the
MC68040 emulator when developing virtual memory systems.

Chapter 11, "Emulator Commands," lists and describes each of the commands
available in the emulator/analyzer.

Chapter 12, "Emulator Messages," lists each of the messages that you may see
while using the MC68040 emulator/analyzer, and describes conditions that may
cause the message to appear, and suggests actions you can take to correct problems
indicated by the messages.

Chapter 13, "Setting X Resources," shows how you can change the appearance or
behavior of certain elements in the graphical interface.

Chapter 14, "The SPARCsystemTM Graphical User Interface and Softkey
Interface," discusses use of the emulator/analyzer interface on the SPARCsystem.

Chapter 15, "Microtec Language Tools Used With MC68040 Emulators," describes
how to use the emulator/analyzer with Microtec language tools.

Chapter 16, "Specifications and Characteristics," lists the specifications and
operating characteristics of the MC68040 emulator/analyzer.

Part 3

368

10

Using Memory Management

Understanding logical and physical emulation and analysis

369

Understanding Emulation and Analysis Of The
Memory Management Unit

You only need to read this chapter if you are using the on-chip MMU (Memory
Management Unit) of the MC68040 or MC68LC040 microprocessor. If you are
using an MC68EC040, or if you are using an MC68040 or MC68LC040 with its
MMU disabled, you won’t need the information in this chapter.

This chapter begins with a discussion of terms and conditions you need to
understand when you are using the MC68040 or MC68LC040 emulator/analyzer
with the MMU enabled. Under these conditions, many capabilities and features
become available that are not otherwise offered. Also, some of the features you
have been using behave differently. These are discussed in this chapter.

Terms And Conditions You Need To Understand

The following paragraphs explain the differences between logical and physical
memory, and between static and dynamic virtual memory systems.

Logical vs Physical

When you develop a program, compile it or assemble it, and link it, addresses are
assigned to contain each of the bytes of the program. These addresses are logical
addresses. When the program is loaded into hardware memory so that it can be
executed by the microprocessor, it is loaded into physical address space. When you
are not using an MMU, the program is loaded into physical memory hardware at
the logical addresses assigned in the linker load map. Under these conditions, there
is no need to differentiate between logical addresses and physical addresses because
they are the same (simply addresses). When you use the MMU, it becomes
necessary to understand the difference between logical addresses and physical
addresses.

Most emulation and analysis commands that require an address as part of the
command use logical addresses. Some emulation and analysis commands will
accept either logical or physical addresses.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

370

What are logical addresses?

Logical addresses are the addresses that are assigned to your program code when
you develop your program. They are the addresses represented by symbols in your
symbols data base (the symbol "Main" represents a logical address).

What are physical addresses?

Physical addresses are the addresses assigned by the MMU to contain your
program. Physical addresses identify locations where you actually have memory
hardware in your target system. Physical addresses appear on the processor address
bus instead of logical addresses.

Static and dynamic system architectures

There are several design strategies where memory management can help in
developing a system or product. Three of these are described in the following
paragraphs. One shows memory management used in a static memory system. The
other two show memory management used in different dynamic memory systems.
The MC68040 emulator is designed to work in any of these system types; however,
the deMMUer which provides reverse translations to the analyzer is primarily
intended for use in static systems.

Static system example

A static system design may use the MMU simply to protect supervisor code and I/O
space against accesses from a user program. Once a static system is initialized, it
never changes. Your HP emulator and analyzer can give you complete support for
a static memory management system. After the MMU has been set up to manage
memory in a static system, the deMMUer can be loaded with information to reverse
the MMU translations over the entire range managed by the MMU.

Non-paged dynamic system example

Assume three programmers are developing separate programs to run in a real-time
operating system environment. The programmers each write their programs to
begin at address 0h. The operating system accepts the responsibility to know where

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

371

in physical memory space each of these programs will be located. The
programmers don’t have to worry that some additional code they write in their
programs might overwrite some of the code that was written by another
programmer. The operating system will place all of the code in available memory
space and place appropriate translation mappings in the MMU to ensure that when
the logical address for one of the programs (tasks) is present in the program
counter, the appropriate physical address will appear on the bus to access the
desired physical memory location.

Your HP emulator/analyzer can give you partial support for a non-paged, dynamic
system. When the MMU has been set up to manage memory during execution of
one of the above tasks, you can update the deMMUer to translate addresses for that
task. When that task is executing, the analyzer will be able to make trace
measurements and provide correct results. When any of the other tasks are
executing, trace measurement results will be invalid because the other tasks will
depend on different translation tables in the MMU and there is no way to
automatically update the deMMUer when execution switches from one task to
another.

Paged dynamic system example

Assume you have developed a program that occupies 10 megabytes of logical
address space. Perhaps you have only 2 megabytes of physical address space in
your system. Still, you want to be able to run the entire program. You set up a
specification in the MMU translation control register to divide the address space
into pages (the 68040 lets you divide the memory space into one of two page sizes:
either 4 Kbytes or 8 Kbytes). Assume you set up the MMU to divide the memory
into 4-Kbyte pages. Your program will occupy 2,500 pages of code, and 500 of
these pages can be contained within your physical memory space at any given time.

As your program executes, the operating system moves pages of your program code
into address space in physical memory. When execution goes beyond the addresses
contained on the presently active page, the MMU checks to see if the next logical
address is on a page that has already been placed in physical memory. If it is, the
MMU performs the appropriate translation for the next logical address, placing the
appropriate physical address on the bus, and execution continues. If it is not, the
operating system moves the page that has the next address to be executed up from
an external storage device to physical memory space, overwriting one of the pages
that had occupied physical space before. The operating system updates the
translation tables to identify the new logical address space that now occupies that 4
Kbyte of physical memory, and program execution continues.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

372

As pages are swapped back and forth between an external storage device and the
physical memory, the relationship between any one logical address and its
corresponding physical address may change many times.

Your HP emulator will let you run a paged, dynamic system, but the analyzer will
not be able to provide support for such features as symbolic addresses, or display of
corresponding source files. The deMMUer cannot detect changes in the MMU
mappings. The longer the system runs, the further out of date the deMMUer will
become. Of course, the analyzer will still be able to show activity captured at
physical addresses. By experimenting with several starting points for the inverse
assembler, you can obtain a trace list with activity inverse assembled into an
equivalent assembly language listing (display trace
disassemble_from_line_number <NO.> [low_word]).

Where Is The MMU?

The MMU is located between the CPU core and the external address bus. The
program counter always contains logical address values. When the MMU is turned
off, the program counter value is placed directly on the address bus to access an
address in physical memory. When the MMU is turned on, the MMU accepts the
logical address value and translates it (by using its translation tables) to a physical
address. The physical address from the MMU is placed on the processor address
bus.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

373

Using Supervisor and User Privilege Modes

The MMU allows separate tables to be set up for supervisor and user access. For
example, you can create one set of mapping tables to translate addresses in
supervisor space and another set of mapping tables to translate addresses in user
space. The supervisor space uses the SRP (supervisor root pointer). The user space
uses the URP (user root pointer). The supervisor address space can begin at
supervisor address 0, and the user address space can begin at user address 0. The
MMU must ensure that these addresses are placed in different physical spaces.

You can use the MMU to protect your program space from unauthorized accesses.
If you map a portion of your program through the MMU and identify it as
supervisor space, the MMU will not allow any access to that program space unless
the privilege mode is supervisor at the time the access is attempted. Take care to
ensure that supervisor or user is specified with addresses if the MMU will be
making the distinction (example: <address> supervisor emulation rom).

How the MMU is enabled

The MMU depends on a hardware enable and a software enable. Both of these
enables must agree to enable the MMU before it can translate logical addresses to
physical addresses. If either one (or both) of these enables fail to enable the MMU,
it will remain disabled.

Hardware enable

The hardware enable is performed by the MDIS signal. When MDIS is asserted,
the MMU is disabled. When MDIS is negated, the MMU is enabled to translate
addresses. The emulator controls the MDIS line according to the way you set the
"Enable the MMU?" configuration parameter.

If you enter no, the MDIS line is held asserted. If you enter yes, the MDIS line is
directly controlled by the target system. In this condition, your target system can
hold the line high or low to enable or disable the MMU.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

374

Software enable

The software enable is performed when the operating system loads the enable value
into the translation control register (TC). If the enable bit of the TC register is
"e=1", the MMU will be enabled. If the enable bit in the TC register is "e=0", the
MMU will be disabled.

Restrictions when using the emulator with the
MMU turned on

There are only three restrictions: you must use a foreground monitor, it must not be
write-protected, and you must map it to address space that the MMU translates 1:1
(logical=physical) for supervisor accesses.

You must use a foreground monitor. The background monitor does not have the
capabilities to support the MMU functions. The foreground monitor can operate
with the MMU turned on.

You must map the monitor code to address space that the MMU translates 1:1 for
supervisor accesses. The emulator executes monitor code to implement many of its
emulation features. The emulator must be able to find the monitor code whether
the MMU is turned on or off. By mapping the monitor into address space that has a
1:1 translation, the monitor stays within known address space at all times, and the
emulator can always find it when it needs to use it. This mapping is described at
the end of Chapter 8, "Configuring the Emulator."

Be sure that no write-protection exists in the MMU mapping for the monitor.

Caution Make sure your translation tables are valid. Turning on the MMU can cause your
program or emulator to fail if the MMU tables are not set up correctly. The address
space where the program is executing can change when the MMU is turned on or
turned off. Stack space or other data spaces can move. Breakpoints that have been
set can be lost.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

375

How the MMU affects the way you compose your
emulation commands

When you display registers, the address registers, stack pointers, and program
counter always contain logical addresses, even when the MMU is turned on.

If you place an address in the entry buffer and choose Execution→Run→from() ,
or enter a run from <address> command, the address you enter must be a logical
address. The program counter will accept it and supply it to the MMU for
translation before it places the address on the processor bus.

Breakpoint addresses in RAM space are always logical addresses. When you set a
breakpoint at an address, that address is translated by the MMU and the BKPT
instruction replaces the instruction at the appropriate physical address. When the
breakpoint is executed, the emulator restores the original instruction to the physical
address, by first translating the logical address through the MMU.

Consider what happens if you set a breakpoint at a particular address, and before
the breakpoint is hit, you update the translation tables in the MMU, changing the
mapping to the location where the breakpoint is set. This is discussed in detail
under "Solving Problems" at the end of this chapter.

If you enter a command to display memory or modify memory, your command is
directed to logical address space. If you want to display memory at a physical
address, you have to change your command. For example, the command to display
memory at address 100H (Display→Memory→Hex(), or display memory 100h)
will show you the memory content at logical address 100H (which might be some
other physical address). If you want to see the content at physical memory address
100H, you will have to enter the command display memory physical 100h.

Addresses expressed using symbols are always logical addresses. In the case of
symbols, the emulator looks in the symbol data base and finds the logical address
that corresponds to the symbol you used in your command, and it loads that logical
address into the program counter.

If you attempt to modify a memory location that is write-protected by the MMU,
the emulator will temporarily modify the translation tables to allow access.

Chapter 10: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

376

Seeing Details of the MMU Translations

The following paragraphs discuss emulator displays that help you understand
translations made by your MMU. There are three displays, each giving a different
level of detail of the MMU translations.

• The present address mappings in your MMU tables.

• The translation table entries for a single logical address.

• The contents of a single level of the translation tables pointed to by a selected
logical address.

How the emulator helps you see the details of the
MMU mappings

To see all of the logical-to-physical translations presently mapped, choose
Display→MMU Translations from the pulldown menu, or enter the command
display mmu_translations. The emulator will read the present state of the
translation tables and show all of the valid mappings in those tables. The display
will be similar to the following:

 Logical Address Physical Address Attributes
 000089000..000089fff@s 0fff89000..0fff89fff@sa S W
 00008a000..00008afff@s 0fff8a000..0fff8afff@sa S W
 00008b000..00008bfff@s 0fff8b000..0fff8bfff@sa S W
 00008c000..00008cfff@s 0fff8c000..0fff8cfff@sa S W
 00008d000..00008dfff@s 0fff8d000..0fff8dfff@sa S W
 00008e000..00008efff@s 0fff8e000..0fff8efff@sa S W
 00008f000..00008ffff@s 0fff8f000..0fff8ffff@sa S W
 000090000..000090fff@s 0fff90000..0fff90fff@sa S W
 000091000..000091fff@s 0fff91000..0fff91fff@sa S W
 000092000..000092fff@s 0fff92000..0fff92fff@sa S W
 000093000..000093fff@s 0fff93000..0fff93fff@sa S W
 000094000..000094fff@s 0fff94000..0fff94fff@sa S W
 000095000..000095fff@s 0fff95000..0fff95fff@sa S W

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

377

The above listing shows privilege modes were included in the mapping scheme.
The logical and physical addresses were shown in supervisor space. Notice that the
physical addresses also show "a" beside the privilege mode indication. The "a"
indicates physical address space.

Note that the emulator enters the monitor to obtain the information it shows in the
MMU displays. Execution of your target program is suspended while the emulator
gathers information for an MMU display. If there are portions of your target
program that should not be interrupted during execution, insert an execution
breakpoint in some safe area of your program code and run until the breakpoint is
executed. Then you can safely view the MMU mappings.

The display you get with the Display→MMU Translations or display
mmu_translations command can show as much as one line per page (or group of
adjacent pages) of mapped logical address space. Contiguous entries are shown on
one line to make the display more readable. Early terminations (which result in
contiguous translation of multiple pages) will also be shown on a single display line.

The display of MMU mappings will only show pages for which the system has
valid mappings. No information is given in the default mmu_translations display
for paths designated invalid, or for paths containing illegal entries.

To avoid a list of mappings that scrolls for a long time, include an address or
address range in your command. By choosing Display→MMU Translations...
and entering a limited address range in the dialog box, or using the command
display mmu_translations 0 thru 0ffffh, for example, the emulator will show the
valid mappings for only the logical addresses in the range you specify, instead of all
possible mappings.

Another way to limit the number of address ranges shown in an MMU mappings
display is limit the listing to only user or supervisor address space. By choosing
Display→MMU Translations..., entering Start Address 0 and End Address 0ffffh,
and clicking on Function Code user in the dialog box, or using the command
display mmu_translations fcode user 0 thru 0ffffh, the display will show only
the mappings for addresses 0 through 0ffff in user address space.

Note: For convenience, display mmu_translations will use the logical address
range from the most recent display mmu_translations <ADDRESS> thru
<ADDRESS> command, if possible. To change the default logical address range
back to the full address space, use the command: display mmu_translations 0
thru 0ffffffffh , or obtain the Display→MMU Translations... dialog box and enter
the desired address.

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

378

The display shows TT beside address ranges that are overridden by the transparent
translation registers. In these ranges, logical-to-physical address translation will be
1:1. The MC68040 always compares logical addresses to the content of the
transparent translation registers before it attempts a translation. If it finds a match
in the transparent translation registers, it accepts the logical address as the physical
address and performs no translation.

Supervisor/user address mappings

If you are using separate supervisor and user mappings, the emulator will support
this choice and show appropriate information.

• To see only the mappings in supervisor address space, choose Display→MMU
Translations... and in the dialog box obtain Function Code super and enter the
desired address range, or use the command: display mmu_translations fcode
super [<address>[thru <address>]]. This tells the emulator to show the
supervisor mapping for the associated logical address or address range.

• To see only the mappings under the URP, choose Display→MMU
Translations... and in the dialog box obtain Function Code user and enter the
desired address range, or use the command: display mmu_translations fcode
user [<address>[thru <address>]].

• If you do not enter a specification for address space, mappings will be shown
for both root pointers.

The MC68040 uses the URP as the root pointer for user address space, and the SRP
as the root pointer for supervisor address space. No distinction is made between
program and data space.

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

379

Translation details for a single logical address

To see translation details for a logical address, choose Display→MMU
Translations... and click on MMU Tables in the dialog box; then type in an
address, such as 40f8h, in the field beside Address. Or in the command line, enter a
command such as: display mmu_translations tables <address>. The tables
option tells the emulator to show the translation details for the specified address.
The display will show the way the logical address is mapped through the tables to
reach its corresponding physical address.

Address mapping details

The example display shows:

• The translation mapping for logical address 40f8H in supervisor space. Both
the hexadecimal and binary values are shown for the logical address.

• The Table Level line shows how each address bit is mapped. The first seven
bits are used as an offset into Table A. The next seven bits offset into Table B.
The next six bits offset into Table C. The example display was made with
4-Kbyte pages selected; only five bits index into Table C when 8-Kbyte pages
are selected. The lowest-order 12 bits contain the offset into the physical page.

• The index used in Table A is 0 which points to physical address 2028200. The
content of this address is ffffffff, indicating a B level table located at base
address fffffe00. The status also indicates that this table has been used "U",
and the address is write-protected.

• The physical address is finally calculated by adding the physical page offset to
the base address of the physical page.

 Logical Address (hex) 0 0 0 0 4 0 F 8
 Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 02028200 02028200 RESIDENT
 A 000 02028200 ffffffff fffffe00 y y RESIDENT
 B 000 fffffe00 ffffffff ffffff00 y y RESIDENT
 C 004 ffffff10 ffffffff fffff000 y 11 y in y y y RESIDENT

 Physical Address (hex) = fffff0f8

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

380

Status information

The status "U" and "W" can be assigned to an address at any point in its mapping.
You must OR these two status values at each level of the mapping. For example: if
the "W" bit shows "y" at the level of table A, then all of the pages under this entry
in table A are write-protected.

Note that the address shown in the example display was mapped through the
supervisor root pointer. If you wanted to see the mapping through the tables under
the user root pointer, you could choose Display→MMU Translations... and click
on MMU Tables in the dialog box; then type in an address, such as 40f8h, in the
field beside Address and select User beside the Function Code option. Or in the
command line, you would use a command like display mmu_translations tables
fcode user 40f8h. You can add the desired function code table index to your
command to see how any address is mapped through the tables under the selected
root pointer (e.g. user or super).

The specific status bits shown beside each table entry are defined as follows:

• TBL/PAGE indicates the base address of the next table.

• G means the entry is global.

• Ux shows the values of the user programmable attributes (signals UPA0 and
UPA1).

• S means supervisor mode protection.

• CM identifies the cache mode: cw (cachable, writethrough), cc (cachable,
copyback), is (inhibited, serialized), or in (inhibited, nonserialized).

• M means the page has been modified.

• U means the page (or pages) has been used, or previously accessed.

• W means the page is (or pages are) write-protected.

• UDT/PDT indicates whether the page at the next level is RESIDENT or
INVALID.

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

381

Table details for a selected logical address

The lowest level of detail you might like to see is the content of one of the tables
used to map a particular logical address. You might choose Display→MMU
Translations... and in the dialog box, click on MMU Tables, enter Address 40f8h,
and click on Table Level to obtain C; or enter a command like: display
mmu_translations tables 40F8h level C. The emulator would show the details of
Table C where it is used to map logical address 40F8. There might be a great many
Table C’s, but this command will only show the Table C that is used to map the
logical address you specified in your command.

In the example display of table details:

• The LOCATION column shows the physical address of each indexed location
in Table C.

• The TBL/PAGE column shows the base addresses of physical pages indicated
by each location in Table C.

• The first indexed location in Table C shows that its associated physical page
has been accessed, but not modified ("U" bit = "y", and "M" bit = "n").

 Logical Address (hex) 0 0 0 0 4 0 F 8
 Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 00000200 00000200 RESIDENT
 A 000 00000200 0000040b 00000400 y n RESIDENT
 B 000 00000400 0000060b 00000600 y n RESIDENT
 C 000 00000600 0000008f 00000000 n 00 y cw n y y RESIDENT
 C 001 00000604 00001087 00001000 n 00 y cw n n y RESIDENT
 C 002 00000608 00002087 00002000 n 00 y cw n n y RESIDENT
 C 003 0000060c 00003087 00003000 n 00 y cw n n y RESIDENT
 C 004 00000610 00004087 00004000 n 00 y cw n n y RESIDENT
 C 005 00000614 00005087 00005000 n 00 y cw n n y RESIDENT
 C 006 00000618 00006087 00006000 n 00 y cw n n y RESIDENT

Chapter 10: Using Memory Management
Seeing Details of the MMU Translations

382

Using the DeMMUer

The deMMUer circuitry reverses the translations made by the MMU (translates the
physical addresses it finds on the processor buses back to their corresponding
logical addresses) before sending the addresses to the analyzer.

What part of the emulator needs a deMMUer?

Actually, the emulator doesn’t need the deMMUer; the analyzer does. It can’t
provide its full symbolic features unless it has help from the deMMUer. The
analyzer normally receives its address information directly from the processor
address bus. It uses the symbols data base created for the program loaded in
memory to cross reference the addresses it receives to the symbols and
corresponding code in your source files. When the MMU is used, logical addresses
are translated to physical addresses before they are placed on the processor address
bus. Therefore, they no longer match the symbols data base.

What would happen if the analyzer didn’t get help from
the deMMUer?

The analyzer would get its address information directly from the address bus of the
emulation processor. It would have no way to know what translation had occurred
in the MMU. Therefore, it could not trigger or qualify its trace on any symbol
defined in the symbols data base. Further, its trace list could only show you the
physical address value it found on the address bus; it would not be able to show any
symbols associated with that physical address, or any corresponding source file
lines. You would have to figure out for yourself what portion of your program
address space was executing when that physical address appeared on the bus.

How does the deMMUer serve the analyzer?

The analyer does not get its information directly from the processor address bus
when the deMMUer is turned on. Instead, the deMMUer accepts the physical
address from the processor address bus, reverse-translates it to its logical address
value, and supplies it to the analyzer. By having the logical address corresponding
to the transactions on the processor address bus, the analyzer can accept trace

Chapter 10: Using Memory Management
Using the DeMMUer

383

specifications expressed in source file symbols, show symbols in its trace lists, and
show the regions of the source files that were executing when the bus activity
occurred.

Reverse translations are made in real time

The deMMUer performs its reverse translations without slowing down the
measurement. For this reason, the analyzer that obtains its information from the
deMMUer is able to provide its full feature set.

DeMMUer options

• Settings→DeMMUer→Enable or set demmuer off. Your analyzer receives
physical addresses if the MMU is enabled. The analyzer can only show
hexadecimal values for those physical addresses. They may not correspond to
the logical addresses of your program code. Note that until the MMU is
enabled in hardware and software, addresses will be logical. Only after the
MMU is enabled is there a distinction between physical and logical.

• Settings→DeMMUer→Enable or set demmuer on. Your analyzer receives
logical addresses translated by the deMMUer according to the tables in place
when you last loaded the deMMUer. The DeMMUer must be loaded with data
to reverse translations before it can be enabled.

• Settings→DeMMUer→Load from Memory or load demmuer. The
emulator reads the MMU registers and interprets the translation tables to load
the deMMUer. The deMMUer is also enabled after it is loaded.

• Settings→DeMMUer→Load from Memory... This opens a dialog box in
which you can specify values to override the present values in MMU registers
when loading the DeMMUer.

Chapter 10: Using Memory Management
Using the DeMMUer

384

• Settings→DeMMUer→Load from File... This opens a dialog box in which
you can specify the name of a file of reverse translations. This file will be
loaded directly into the DeMMUer instead of reading the present translation
tables and MMU register values to create the reverse translations. Note that
this file must have been previously created using the File→Store→DeMMUer
(From MMU Tables) command from the pulldown menu. This file will have
a ".ED" filename extension.

• Settings→DeMMUer→Verbose. This sets verbose mode for the deMMUer
load function. In the pulldown menus, this is simply a switch. When
"Verbose" is selected for loading the DeMMUer, a list is displayed of the
physical address ranges that will be reverse-translated by the deMMUer.
Addresses will be shown as <address>..<address>@s
This means <address> through <address> at supervisor address space.

What the emulator does when it loads the
deMMUer

When the emulator loads the deMMUer from memory, it does the following:

• Temporarily breaks into the monitor.

• Reads the MMU registers and translation tables from memory to determine all
logical-to-physical address translations.

• Loads the reverse translations into the deMMUer hardware.

• If the accessible physical memory exceeds the 256-Mbyte limitation of the
deMMUer, the emulator reads the emulation memory map for help in selecting
appropriate address ranges to reverse translate.

When the emulator loads the deMMUer from a file, the only difference in the above
algorithm is that the address translations are obtained from the file instead of by
reading MMU registers and translation tables from memory.

Chapter 10: Using Memory Management
Using the DeMMUer

385

Restrictions when using the deMMUer

Keep the deMMUer up to date

When you load the deMMUer, the emulator reads the present value of the TC, SRP,
and URP registers in the MMU, and the present translation tables, and calculates
the address translations that can be performed (all possible physical-to-logical
translations are determined during this process). Then the emulator loads the
deMMUer to reverse those translations. After the deMMUer is loaded, any change
to the MMU, its registers, or its translation tables will make the deMMUer out of
date. The only way to update the deMMUer for changes in the translation setup is
to load the deMMUer again.

The target program is interrupted while the deMMUer is
being loaded

The emulator uses the foreground monitor to load reverse translations into the
deMMUer. Depending on the complexity of your tables, this process can take a
long time. If there are portions of your target program that must not be interrupted
for long periods of time, make sure your code is executing in safe regions before
you load the deMMUer. You might set a breakpoint in a region of your target
program that is outside the time-critical regions and perform the load of the
deMMUer after the breakpoint is executed.

The analyzer must be off

Your analyzer must not be making a trace when you load the deMMUer.
Otherwise, part of the trace will be based on physical addresses and the other part
will be based on logical addresses.

Expect strange addresses if you analyze physical
memory with multiple logical mappings

The deMMUer can only translate a physical address into one logical address. If
two programs both use the same physical space (such as when two programs use a
single data location), they might refer to that space by two different logical address
values (and two different logical address symbols). The deMMUer translation
RAM will be loaded with only one of the logical addresses. This means that you

Chapter 10: Using Memory Management
Using the DeMMUer

386

might be analyzing execution of your program and find it accesses a data space at
an address you don’t recognize, even though the data may be what you expect to
see. The unexpected address will be the logical address known to the other
program that also uses this location.

The way the deMMUer selects a logical address for a physical address when two or
more logical addresses are available is as follows:

• The deMMUer selects the logical address with the lowest address value.

• If one of the addresses is controlled by the MMU tables and one by a
transparent translation register, the deMMUer sends the address defined in the
MMU tables.

• If one of the logical addresses is within a range defined in the emulation
configuration memory map and another is not, the logical address defined in
the memory map is sent.

Chapter 10: Using Memory Management
Using the DeMMUer

387

Resource limitations

If you load the DeMMUer by using one of the Settings→DeMMUer→Load from
Memory/Memory... or load demmuer commands and your emulator performs its
task and returns a prompt to the command line, you won’t need to know about the
deMMUer resource limitations. When the deMMUer is loaded without any
problems, the prompt simply shows on screen and you can proceed with your
measurement. The following information will help you deal with problems when
you try to load the deMMUer and receive a message such as "Out of deMMUer
resources". Note that when you see one error message, there may have been other
messages generated at the same time. Display the error log to see all of the error
messages that were generated. This will give you additional information about the
error that caused the message to appear.

The deMMUer has a table where it records ranges of physical addresses that it can
reverse translate to logical addresses. This table has eight entries, and each entry
contains a single physical address range. Each address range in the table will be 32
Mbytes. Up to 256 Mbytes of physical addresses can be reverse translated.
Normally, entries in this table are allocated automatically, without intervention.

address..address

address..address

address..address

address..address

address..address

address..address

address..address

Chapter 10: Using Memory Management
Using the DeMMUer

388

Example to show resource limitations

Consider the following program arrangement:

Assume a system contains memory and peripherals at three different ranges: one
from 0 to 4 Mbytes, one from 256 to 258 Mbytes, and one from 512 to 514 Mbytes.
The rest of the physical address space is unused.

If your MMU mapping tables are set up to only allow access to memory in these
ranges, your deMMUer will load properly and you can proceed with your
measurements. If you failed to restrict your MMU mappings to these physical
ranges (instead you provided valid address translations for the entire 4-Gbyte
address space), the deMMUer will allocate all eight of its resource blocks in the
first 256-Mbyte range, and no deMMUing will be provided for the peripherals and
ROM space in the above program.

The Emulation Memory Map Can Help

When the emulator tries to load the deMMUer and finds more physical memory
identified in the MMU mapping tables than it can translate in its deMMUer table, it
will assign resources to terms defined in the emulation memory map. If the
emulation memory map is arranged as follows, the deMMUer will load in a way
that ensures the physical ranges of interest will be in the deMMUer.

0 to 3FFFFFH EMUL/RAM
10000000H to 101FFFFFH TARGET/RAM
20000000H to 203FFFFFH TARGET/ROM
default TARGET RAM

When the emulator reads the emulation memory map for help in loading the
deMMUer, it sorts the entries: first by size, and second by address range. The
smallest address range (256M to 258M) will occupy the first resource block in the
deMMUer translation table. Address range (0 to 4M) will occupy the second
resource block, and address range (512M to 514M) will occupy the third resource
block. The remaining five resource blocks will be assigned to other physical ranges
found in the MMU tables, beginning with the lowest addresses. You may see a
message indicating some physical addresses will not be translated by the

4M RAM Unused 2M Peripherals Unused 4M ROM Unused

0 4M 256M 258M 512M 514M

Chapter 10: Using Memory Management
Using the DeMMUer

389

deMMUer, or Out of DeMMUer resources, because the deMMUer might run out of
resource blocks before all of the physical addresses have been assigned reverse
translations, but the program spaces you care about will all be reverse translated.
You can use the verbose option of the deMMUer load command to make sure the
program spaces you care about will be reverse translated.

If you map a space greater than 256 Mbytes in the emulation memory map, you
will run out of resource blocks before you satisfy the map.

The best way to ensure that all of the address ranges you care about will be reverse
translated is to compose an emulation memory map that allocates blocks of
physical memory only large enough to accommodate the address space occupied by
code you are trying to develop. The deMMUer algorithm will allocate resource
blocks in its eight-entry table to reverse translate only those physical address ranges.

With the above example, you could have avoided running out of resources. If you
had placed invalid descriptors in your MMU tables in the paths that lead to unused
physical address ranges, the deMMUer would have had more than enough resource
blocks in its eight-entry table to reverse translate the valid address ranges.

Finally, you can store the present setup of the MMU to a file, and then use an editor
to eliminate address ranges that do not need to be reverse translated. This only
leaves address ranges that need to be reverse translated in the file. Then you can
load this file into the deMMUer. When this file is loaded, the deMMUer creates a
set of reverse translations for it, ignoring the MMU setup in the emulator. Refer to
"Saving and Restoring DeMMUer Setup Files" in Chapter 3, "Using the
Emulation-Bus Analyzer", for how to store and load a deMMUer file.

Chapter 10: Using Memory Management
Using the DeMMUer

390

Dividing the deMMUer table between user and
supervisor address space

You can have two sets of MMU translation tables, one under each root pointer
(URP and SRP). In this case, the emulator divides the deMMUer table into two
equal address spaces. The first four resource blocks provide reverse translations for
user physical address ranges, and the last four resource blocks provide reverse
translations for supervisor physical address ranges.

There are cases where the deMMUer table will not be divided into two sets of four
resource blocks each, even if you are using both root pointers (URP and SRP). If
the values of your user root pointer and supervisor root pointer are the same
(URP = SRP), and if the user and supervisor function codes are ignored in all of the
transparent translation registers, then the deMMUer table will not be divided. It
will make its eight resource blocks available to reverse translate either user or
supervisor space.

If the user root pointer and supervisor root pointer contain different values, or if
function-code mapping is used in any of the transparent translation registers, the
deMMUer table will be divided into two 4-block tables as shown below.

address..address@u

address..address@u

address..address@u

address..address@u

address..address@s

address..address@s

address..address@s

Chapter 10: Using Memory Management
Using the DeMMUer

391

Solving Problems

Your program and emulator may be running fine until you turn on the MMU. Then
program execution may fail. You may not be able to use features of your emulator.
How can this happen? It can happen if the MMU mapping tables are incorrect.
When the MMU turns on and starts managing memory by performing tablewalks in
tables that are invalid, pages of logical memory may overwrite your stack space,
your emulation monitor, or any other address space, making your entire system
unusable. If this happens, note where the program is executing. The stack may be
inaccessible. The monitor (with its emulation feature set) may be inaccessible. The
vector table may be placed in guarded memory. Program data space may become
inaccessible.

Using the "display mmu_translations" command
to overcome plug-in problems

Plug-in problems involving the MMU are often caused by incorrect mappings in
your translation tables. If your logical address is translated to an incorrect physical
address, the Display→MMU Translations or display mmu_translations
command can show the details of how your logical addresses are mapped to the
wrong physical addresses.

To display the MMU translations when the TC register contains a disable value,
include the enable value (8000h) in the Override Processor Register Values section
of the Display MMU Translations dialog box, or include use_value TC 08000h in
your command line entry.

You can also enter the Display→MMU Translations... or display
mmu_translations command to test your mappings before you enable the MMU.
This command by itself reads all present translations in your MMU tables. No
invalid or illegal paths are shown in the listing. You can read through the display
on screen to see if all of your address ranges are represented, and if they are
mapped to appropriate space in physical memory.

When you enter the Display→MMU Translations or display mmu_translations
command, the emulator reads the MMU registers (TC, URP, and SRP) and MMU
tables. If you do not have correct values in the TC, URP, and SRP registers, the

Chapter 10: Using Memory Management
Solving Problems

392

emulator will let you specify correct values to be used when composing the display
of translations You can use the dialog box that is called by the Display→MMU
Translations... selection and click on Override Processor Register Values and enter
the desired values for the TC, SRP, URP, ITT0, ITT1, DTT0, and DTT1 registers
(or RECALL desired values from earlier usages). If you are using the command
line, you can use the use_value option to the display mmu_translations
command and specify any of the above registers with desired values to obtain the
display of MMU translations.

Use the analyzer with the deMMUer to find MMU
mapping problems

If your system operates properly until you turn on the MMU, and then it fails, the
problem is most likely in the mappings used by the MMU to translate logical
addresses to physical addresses. You could go down the list of logical-to-physical
translations to see the mapping scheme used to translate each logical address to its
corresponding physical address, but normally that would take too much time. The
analyzer can help you identify the one, or few, logical addresses that are being
mapped incorrectly by the MMU. Then you can choose Display→MMU
Translations..., click on MMU Tables in the dialog box, and enter the suspect
addresses to see the mapping tables used to translate those addresses. On the
command line, you can use the display mmu_translations tables <address>
command to look at the mapping tables used to translate the suspected addresses.

Failure caused by access to guarded memory

If the problem is an access to guarded memory, remember that guarded memory is
guarded physical memory. You need to find the logical address that the MMU
improperly translated to guarded physical memory and then investigate the
mappings the MMU used to perform the translation.

Begin by looking at the registers display (Display→Registers→BASIC or display
registers) to see the value of the logical address in the program counter. Then
choose Display→MMU Translations..., and use the dialog box, or use the
display mmu_translations tables <address> command to see the path through the
tables that the MMU took when it translated that logical address to a guarded
address in physical memory. Note that the value of the program counter may have

Chapter 10: Using Memory Management
Solving Problems

393

changed after the guarded access occurred. In this case, the present address in the
program counter may map to proper physical memory.

If the present program counter address does not translate to an address in guarded
physical memory, the access to guarded memory may have been caused when your
program read or wrote to data memory before the present program counter address
appeared. Set up the analyzer to make a trace (with the deMMUer turned on) and
trigger at the logical program counter address (by placing the PC address in the
entry buffer and choosing Trace→About (), or using the command trace about
address <pc address>). Selecting a center trigger lets you see activity preceding
and following the trigger point. In order to capture every transaction on the
emulation bus, qualify all states for capture (don’t use the trace only option).

If the access occurs again just before the program counter address you used as your
trigger specification, you should be able to read back in the trace list and find one
or more addresses that could be causing the problem. Then you can try those
suspected addresses in commands (choose Display→MMU Translations..., click
on MMU Tables in the dialog box, and enter the suspect addresses, or on the
command line, display mmu_translations tables <suspect_address>) to see how
each of them is mapped through the MMU tables. This should identify the error in
the MMU mapping tables.

If you find a particular address that is mapped to guarded memory, and if the
problem seems to be in Table B (for example), you can look at the details of Table
B for that address by clicking on Table Level B in the Display MMU
Translations... dialog box, or by using a command, such as
display mmu_translations tables <address> level B.

Failure due to system halt

If the emulator or target system or both simply stop operating, set up the analyzer to
trace with a trigger-never specification (Trace→Until Stop or trace on_halt) so
that the trace will run continuously until the system stops again. After the system
halt occurs again, read the trace list to find the addresses preceding the system halt.
Check suspected addresses by choosing Display→MMU Translations..., clicking
on MMU Tables in the dialog box, and entering the suspect addresses. Or, on the
command line, enter display mmu_translations tables <address> commands to
see how the MMU maps each one to physical memory.

Chapter 10: Using Memory Management
Solving Problems

394

Execution breakpoint problems

If you set a breakpoint in RAM, the emulator modifies memory using a logical
address. If you set a breakpoint in ROM, the emulator translates a logical address
into a physical address and remembers the physical address as the address where it
will jam the breakpoint instruction when it is fetched. If your MMU address
translations change while breakpoints are activated, you can get the "undefined
software breakpoint" message when you run your program or or the "breakpoint
code already exists" message when you attempt to modify the breakpoints.

You set a breakpoint. Then the MMU changes its mappings. Now the logical
address where the breakpoint is to occur is translated to a different physical address.
No emulation break occurs when the logical address is translated to the new
physical address. Some different logical address is translated through the MMU to
reach the physical breakpoint address, and the emulator jams the BKPT instruction.
When the BKPT instruction is executed, it is at a point in your program where you
never set a breakpoint.

You should disable any hardware breakpoints before changing the MMU address
translations. Reenable the hardware breakpoints after the MMU address
translations have been modified.

A "can’t break into monitor" example

The following example assumes you mapped your foreground monitor beginning at
address 4000H. You connected your emulator into your target system and ran your
target program (which set up the MC68040 MMU). You tried to break into the
emulation monitor and got the message, "Can’t break into monitor."

The emulator can’t break into the monitor because it can’t find the monitor. The
MMU mapped the foreground monitor to physical address space that is not a 1:1
translation from logical address space.

A variety of failure modes can happen at this point. Your emulation system may
execute unknown code, or it may simply halt.

To analyze this problem, reset into the monitor by choosing Execution→Reset and
then Execution→Break, or using command-line commands: reset, and then break.

Chapter 10: Using Memory Management
Solving Problems

395

The reset does not change the content of the MMU mapping tables or registers. It
only disables the "enable bit" in the TC register of the MMU. Now you can look at
the translations that are performed by the MMU to find the translation that was
applied to your foreground monitor. Choose Display→MMU Translations..., and
override the TC register with 8000h in the dialog box, or enter the command:
display mmu_translations use_value TC 8000h.

Remember to override the TC register value with 8000h in order to enable the
reading of the MMU tables by the emulator.

The display will show a list of the logical-to-physical address translations that will
be performed when the MMU is enabled. Find the logical address range that
contains your foreground monitor and see the physical address where it is mapped.
The physical address range needs to be the same as the logical address range for the
emulator to be able to find the monitor.

The display you get by choosing Display→MMU Translations..., or entering the
command: display mmu_translations (with the required value to override the TC
register), might show the logical address range of your foreground monitor mapped
to physical addresses beginning at C000H, as follows:
Logical Address Physical Address

00004000..00004fff 0000C000..0000cfff@a

Chapter 10: Using Memory Management
Solving Problems

396

The next step in this analysis is to display the MMU mapping table for the logical
base address of the foreground monitor. You might choose Display→MMU
Translations..., and in the dialog box, click on MMU Tables and type in Address
4000H (plus the TC register override). Or, you could enter the command display
mmu_translations tables 4000h use_value TC 8000h. In this example, you
would see the following display of mappings:

 Logical Address (hex) 0 0 0 0 4 0 0 0
 Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 00000200 00000200 RESIDENT
 A 000 00000200 0000040b 00000400 y n RESIDENT
 B 000 00000400 0000060b 00000600 y n RESIDENT
 C 016 00000640 0000c01f 0000C000 n 00 y cw y y n RESIDENT

 Physical Address (hex) = 0000c000

In the example display, the foreground monitor whose logical address is 4000 was
placed in physical address C000. Table C points to the page containing the
foreground monitor. The base address of Table C is 00000600, and the content
used by logical address 4000 is at index 016 whose physical address is 00000640.
The content of this address is 0000C000H (the address of the page containing the
monitor).

To solve the problem in this example, you can obtain the needed 1:1 mapping by
modifying the content of the MMU table directly with the following command-line
command: modify memory physical 00000640h to 0000401fh.

Chapter 10: Using Memory Management
Solving Problems

397

After this modification, you can get a new display of the mapping tables for logical
address 4000h to see if your modified MMU tables now map your foreground
monitor correctly. Choose Display→MMU Translations..., and in the dialog box,
click on MMU Tables and type in Address 4000H (and include the value 8000h to
override the TC register). Or, enter the command
display mmu_translations tables 4000h use_value TC 8000h.

 Logical Address (hex) 0 0 0 0 4 0 0 0
 Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
 Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

 LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
 SRP 00000200 00000200 RESIDENT
 A 000 00000200 0000040b 00000400 y n RESIDENT
 B 000 00000400 0000060b 00000600 y n RESIDENT
 C 016 00000640 0000401f 00004000 n 00 y cw y y n RESIDENT

 Physical Address (hex) = 00004000

The above modifications will provide the proper mapping for your system until you
rerun the portion of your target program that sets up the MMU. Then the same
problem will occur again. To fix the problem permanently, you need to modify
your target program so it provides a 1:1 mapping for the address space where the
foreground monitor is located.

Chapter 10: Using Memory Management
Solving Problems

398

11

Emulator Commands

The command syntax reference for the emulator softkey interface

399

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are
summarized.

Chapter 11: Emulator Commands

400

How Pulldown Menus Map to the Command Line

Pulldown Command Line

File→Context→Directory
File→Context→Symbols
File→Load→Emulator Config
File→Load→Executable
File→Load→Program Only
File→Load→Symbols Only
File→Load→Trace Data
File→Load→Trace Spec
File→Load→DeMMUer
File→Store→Trace Data
File→Store→Trace Spec
File→Store→BBA Data
File→Store→DeMMUer (From MMU Tables)
File→Copy→Display
File→Copy→Memory
File→Copy→Data Values
File→Copy→MMU Translations
File→Copy→Trace
File→Copy→Registers
File→Copy→Breakpoints
File→Copy→Status
File→Copy→Global Symbols
File→Copy→Local Symbols ()
File→Copy→Pod Commands
File→Copy→Error Log
File→Copy→Event Log
File→Log→Playback
File→Log→Record
File→Log→Stop
File→Emul700→Emulator/Analyzer
File→Emul700→<other products>
File→Edit→File
File→Edit→At () Location
File→Edit→At PC Location
File→Term

cd
cws
load configuration
load <abs_file>
load <abs_file> nosymbols
load symbols
load trace
load trace_spec
load demmuer <file>
store trace
store trace_spec
bbaunload
store demmuer <file>
copy display to
copy memory to
copy data to
copy mmu_translations to
copy trace to
copy registers to
copy software_breakpoints to
copy status to
copy global_symbols to
copy local_symbols_in --SYMB-- to
copy pod_command to
copy error_log to
copy event_log to
<command file>
log_commands to
log_commands off
N/A
N/A
! vi <file> ! no_prompt_before_exit
! vi +<line> <file> ! no_prompt_before_exit
! vi +<line> <file> ! no_prompt_before_exit
!

Chapter 11: Emulator Commands

401

Pulldown Command Line

File→Exit→Window (save session)
File→Exit→Locked (all windows, save session)
File→Exit→Released (all windows, release
emulator)

end
end locked
end release_system

Display→Context
Display→Memory
Display→Memory→Mnemonic ()
Display→Memory→Mnemonic at PC
Display→Memory→Mnemonic Previous
Display→Memory→Hex ()→bytes
Display→Memory→Hex ()→words
Display→Memory→Hex ()→long
Display→Memory→Real ()→short
Display→Memory→Real ()→long
Display→Memory→Real ()→extended
Display→Memory→Real ()→packed
Display→Memory→At ()
Display→Memory→Repetitively
Display→Data Values
Display→Data Values→New ()→<type>
Display→Data Values→Add ()→<type>
Display→MMU Translations
Display→Trace
Display→Registers→<type>
Display→Breakpoints
Display→Status
Display→Simulated IO
Display→Global Symbols
Display→Local Symbols ()
Display→Pod Commands
Display→Error Log
Display→Event Log

pwd, pws
display memory
display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR-- real extended
display memory --EXPR-- real packed
display memory --EXPR--
display memory repetitively
display data
display data --EXPR-- <type>
display data, --EXPR-- <type>
display mmu_translations
display trace
display registers <type>
display software_breakpoints
display status
display simulated_io
display global_symbols
display local_symbols_in --SYMB--
display pod_command
display error_log
display event_log

Modify →Emulator Config
Modify →Memory
Modify →Memory at ()
Modify →Register

modify configuration
modify memory
modify memory --EXPR--
modify register

Chapter 11: Emulator Commands

402

Pulldown Command Line

Execution→Run→from PC
Execution→Run→from ()
Execution→Run→from Transfer Address
Execution→Run→from Reset
Execution→Run→until ()
Execution→Step Source→from PC
Execution→Step Source→from ()
Execution→Step Source→from Transfer
Address
Execution→Step Instruction→from PC
Execution→Step Instruction→from ()
Execution→Step Instruction→from Transfer
Address
Execution→Break
Execution→Reset

run
run from --EXPR--
run from transfer_address
run from reset
run until --EXPR--
step source
step source from --EXPR--
step source from transfer_address

step
step from --EXPR--
step from transfer_address

break
reset

Breakpoints→Display
Breakpoints→Enable
Breakpoints→Temporary()

Breakpoints→Permanent()

Breakpoints→Force HW→Permanent()

Breakpoints→Force HW→Temporary()

Breakpoints→Set All
Breakpoints→Clear ()
Breakpoints→Clear All

display software_breakpoints
modify software_breakpoints enable/disable
modify software_breakpoints set --EXPR--
temporary
modify software_breakpoints set --EXPR--
permanent
modify software_breakpoints set --EXPR-- permanent
force_hw
modify software_breakpoints set --EXPR-- temporary
force_hw
modify software_breakpoints set
modify software_breakpoints clear --EXPR--
modify software_breakpoints clear

Chapter 11: Emulator Commands

403

Pulldown Command Line

Trace→Display
Trace→Display Options
Trace→Trace Spec
Trace→After ()
Trace→Before ()
Trace→About ()
Trace→Only ()
Trace→Only () Prestore
Trace→Again
Trace→Repetitively
Trace→Everything
Trace→Until ()
Trace→Until Stop
Trace→Stop

display trace
display trace ...
N/A (browses recall buffer for trace commands)
trace after STATE
trace before STATE
trace about STATE
trace only STATE
trace only STATE prestore anything
trace again
<previous trace spec> repetitively
trace
trace before STATE break_on_trigger
trace on_halt
stop_trace

Settings→Source/Symbol Modes→Absolute
Settings→Source/Symbol Modes→Symbols
Settings→Source/Symbol Modes→Source
Mixed
Settings→Source/Symbol Modes→Source
Only
Settings→Display Modes
Settings→DeMMUer→Load from Memory
Settings→DeMMUer→Load from File
Settings→DeMMUer→Verbose

Settings→DeMMUer→Enable
Settings→Pod Command Keyboard
Settings→Simulated IO Keyboard
Settings→Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set ...
load demmuer
load demmuer <file>
N/A (toggles the verbose mode of the DeMMUer load
function)
set demmuer on/off
display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

Chapter 11: Emulator Commands

404

Emulator Configuration: Memory Map

Pulldown Command Line

File→Print Map
File→Exit

print
end

Map→Add New Entry
Map→Modify Entry →<entry#>
Map→Delete Entry→<entry#>
Map→Delete All
Map→Default Memory Type→Target RAM→
Transfer Cache Inhibit OFF
Map→Default Memory Type→Target RAM→
Transfer Cache Inhibit ON
Map→Default Memory Type→Target ROM→
Transfer Cache Inhibit OFF
Map→Default Memory Type→Target ROM→
Transfer Cache Inhibit ON
Map→Default Memory Type→Guarded

N/A (calls the associated dialog box)
N/A (calls the associated dialog box)
delete <entry#>
delete all
default target ram

default target ram transfer_cache_inhibit

default target rom

default target rom transfer_cache_inhibit

default guarded

Settings→Command Line N/A (toggles the command line)

Chapter 11: Emulator Commands

405

How Popup Menus Map to the Command Line

Mnemonic Memory Display Popup Command Line

Set/Clear Software Breakpoint

Edit Source
Run Until
Trace After
Trace Before
Trace About
Trace Until

modify software_breakpoints set/clear --EXPR--
permanent
! vi +<line> <file> ! no_prompt_before_exit
run until fcode sp --EXPR--
trace after STATE
trace before STATE
trace about STATE
trace before STATE break_on_trigger

Breakpoints Display Popup Command Line

Set/Inactivate Breakpoint
Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--
modify software_breakpoints enable/disable
modify software_breakpoints set
modify software_breakpoints clear

Symbols Display Popup Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--
display local_symbols_in --SYMB--, display
global_symbols
N/A
! vi +<line> <file> ! no_prompt_before_exit

Chapter 11: Emulator Commands

406

Trace Display Popup Command Line

Disassemble From
Edit Source
Display Memory At

display trace disassemble_from_line_number <line#>
! vi +<line> <file> ! no_prompt_before_exit
display memory <address> mnemonic

Status Line Popup Command Line

Remove Temporary Message
Command Line On/Off
Display Error Log
Display Event Log

N/A
(toggles command line)
display error_log
display event_log

Command Line Popup Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command
Clear to End of Line
Clear Entire Line
Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key
<RETURN> key
<CTRL>e
<CTRL>u
(toggles command line)

Emulation Configuration:
Memory Map Display Popup Command Line

Modify Entry
Add New Entry
Delete Entry

delete <entry#>, <add <entry#>>
<add <entry#>>
delete <entry#>

Chapter 11: Emulator Commands

407

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols contain command tokens. Command tokens, together with
symbols and numeric values, make up complete Softkey Interface commands. Most
command tokens appear on softkey labels. Those that do not appear as softkeys
must be typed into the command line (for example, log_commands and wait). An
example of an oval-shaped symbol is as follows:

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompt softkeys, softkey-changers, and
references to other syntax diagrams. Prompt softkeys are enclosed in angle brackets
(< and >). Softkey-changers are enclosed in dashes (--). References to other
diagrams are shown in all capital letters without any enclosing symbols.

Examples of all three kinds of rectangular symbols follow:

Prompt Softkey. Press to get a hint about the kind of
information needed.

Softkey Changer. Press to get another set of softkeys.
Some softkey changers have their own syntax diagrams in
this chapter.

Reference to a diagram showing details in this chapter.

Chapter 11: Emulator Commands

408

Circles

Circles contain operators and delimiters used in expressions and on the command
line. An example of a circle symbol is as follows:

The —NORMAL— Key

The softkey labeled —NORMAL— is a special softkey-changer; use it to return to
the former set of softkeys. For example, you can press the —EXPR— softkey to
call up a set of prompt softkeys to help you complete an expression. After you
complete the expression, you can return to the set of softkeys containing the
—EXPR— softkey by pressing the —NORMAL— softkey.

Chapter 11: Emulator Commands

409

Summary of Commands

Softkey Interface commands are summarized in the following table:

Emulator Commands

UNIX_COMMAND3

break
cd (change directory)3

cmb_execute
<command file>3

copy data4

copy display
copy error_log
copy event_log
copy global_symbols
copy help
copy local_symbols_in
copy memory4

copy mmu_translations5

copy pod_command
copy registers1

copy software_breakpoints
copy status
copy trace
cws(change working symbol)3

display data4

display error_log
display event_log

display global_symbols
display local_symbols_in
display memory4

display pod_command
display local_symbols_in
display mmu_translations5

display registers1

display simulated_io2

display software_breakpoints
display status
display trace
end
help3

load <absolute_file>
load configuration
load demmuer5

load emul_mem
load trace
load trace_spec
load user_memory
log_commands3

modify configuration

modify keyboard_to_simio2

modify memory4

modify register1

modify software_breakpoints1

name_of_module3

performance_measurement_end
performance_measurement_init
performance_measurement_run
pod_command
pwd (print working directory)3

pws (print working symbol)3

reset
run
set
specify
step
stop_trace
store demmuer5

store memory
store trace
store trace_spec
trace
wait3

1 This option is not available in real-time mode.
2 This is only available when simulated I/O is defined.
3 These commands are not displayed on softkeys.
4 This option is not available in real-time mode if addresses are in target memory or in emulation memory
that is not dual-port.
5 These commands are available only when the MMU is enabled.

Chapter 11: Emulator Commands

410

break

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior of break depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor The break command does not perform any operation while
the emulator is executing in the monitor.

Example
break

See Also
help break
run
step

Chapter 11: Emulator Commands
break

411

cmb_execute

The cmb_execute command causes the emulator to emit an EXECUTE pulse on
its rear panel CMB connector. All emulators connected to the CMB (including the
one sending the CMB EXECUTE pulse) and configured to respond to this signal
will take part in the measurement.

Example
cmb_execute

See Also
help cmb
help cmb_execute
help specify
specify run
specify trace

Chapter 11: Emulator Commands
cmb_execute

412

copy

Chapter 11: Emulator Commands
copy

413

The copy command copies selected information to your system printer or listing
file, or directs it to an UNIX process.

Depending on the information you choose to copy, default values may be options
selected for the previous execution of the display command. For example, if you
display memory locations 10h through 20h, then issue a copy memory to myfile
command, myfile will list only memory locations 10h through 20h.

, A comma used immediately after memory in the command line appends the
current copy memory command to the preceding display memory command. The
data specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between values when specifying multiple memory
addresses.

<CLASS> Specifies a particular class of the emulator registers. See the "registers" parameter
in this section for more information about processor registers.

< !CMD!> This represents a UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point (!).
An exclamation point following the UNIX command continues Softkey Interface
command line execution after the UNIX command executes. Emulation is not
affected when using a UNIX command that is a shell intrinsic.

data This allows you to copy a list of memory contents formatted in various data types
(see display data).

display This allows you to copy the display to a selected destination.

error_log This allows you to copy the most recent errors that occurred.

event_log This allows you to copy the most recent events that occurred.

! An exclamation point specifies the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. A trailing exclamation point should be
used if you want to return to the command line and specify noheader. Otherwise,
the trailing exclamation point is optional. If an exclamation point is part of the
UNIX command, a backslash (\) must precede the exclamation point.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

Chapter 11: Emulator Commands
copy

414

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

<FILE> This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For example: copy display to \12.10

from_line_number This specifies the trace list line number from which copying will begin.

global_symbols This lets you copy a list of global symbols to the selected destination.

help The help command is not shown on the softkeys. It allows you to obtain a copy of
a help file on your printer. For details of the help command, refer to the help
syntax diagram in this chapter.

<LINE#> Use this with from_line_number and thru_line_number to specify the starting
and ending trace list lines to be copied.

local_symbols_in This lets you copy all the children of a given symbol to the selected destination. See
the —SYMB— syntax page and the SRU User’s Guide for information on symbol
hierarchy.

Local symbols are symbols that are children of the particular file or symbol defined
by —SYMB—, that is, they are defined in that file or scope.

memory This allows you to copy a list of the contents of memory to the selected destination.
The memory contents are copied in the same format as specified in the last display
memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, and
the address is located in target memory or in emulation memory that is not
dual-port.

Values in emulation memory can always be displayed.

Initial values are the same as those specified by the command display memory 0
blocked bytes offset_by 0.

Defaults are to values specified in the previous display memory command.

Chapter 11: Emulator Commands
copy

415

mmu_translations This allows you to copy a list of all present translations of all logical addresses to
the selected destination.

noappend This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to
append the copied information to the end of an existing file with the same name
that you specify.

noheader This copies the information into a file without headings.

physical This allows you to specify that the addresses to be copied are addresses in physical
memory.

pod_command This allows you to copy the most recent commands sent to the HP 64700-Series
emulator/analyzer. For details, refer to the syntax page for the pod_command in
this chapter.

printer This option specifies your system printer as the destination device for the copy
command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, enter the text shown below after
the “$” symbol:

$ PRINTER=lp
export PRINTER

If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER = “lp -s”

registers This allows you to copy a list of the contents of the emulation processor registers to
the selected destination. The copy register command is not available if the
emulator is configured for real-time-only operation.

With no options specified, the basic register class is copied. Basic registers include:
PC, STATUS, USP, ISP, MSP, CACR, D0 through D7, A0 through A7, VBR,
DFC, and SFC.

Other registers you can copy include:

The FPU registers: FPCR, FPSR, FPIAR, and FP0 through FP7.

The MMU registers: ITT0, ITT1, DTT0, DTT1, MMUSR, TC, SRP, and URP.

<REGISTER> Specifies the name of an individual register.

Chapter 11: Emulator Commands
copy

416

software_
breakpoints

This option lets you copy a list of the current execution breakpoints to a selected
destination.

status This allows you to copy emulation and analysis status information.

—SYMB— This option represents the symbol whose children are to be listed. See the
—SYMB— syntax diagram and the SRU User’s Guide for information on symbol
hierarchy.

thru_line_number Specifies the last line number of the trace list to include in the copied range.

to This allows you to specify a destination for the copied information.

trace This lets you copy the current trace listing to the selected destination. Initial values
are the same as specified by the last display trace command.

Examples
copy local_symbols_in prog68k.S: to printer

copy local_symbols_in cmd_rdr.s: to myfile

copy memory START to printer

copy memory 0 thru 100H , START thru +5 , 500H ,
TARGET2 to memlist

copy memory 2000h thru 204fh to memlist

copy registers BASIC to printer

copy registers to reglist

copy trace to tlist

copy trace from_line_number 0 thru_line_number 5
to longtrac

copy trace to !mail myfriend@col.hp!

Chapter 11: Emulator Commands
copy

417

See Also
display local_symbols_in <SYMB>
display memory
display registers
display trace
modify memory
modify registers
store memory
store trace
help copy
help registers
help trace

Chapter 11: Emulator Commands
copy

418

COUNT

The trace depth of the deep analyzer depends on whether or not you installed
memory modules on the analyzer card (refer to Chapter 19, "Installation and
Service", for details). The maximum depth of the 1K analyzer is 1024 states. A
state is a unique combination of address, data, and status values occurring on the
emulation bus simultaneously. When counting is off, the 1K analyzer can store
1024 states in the trace buffer. When counting is on, the 1K analyzer can only store
512 states in the trace buffer. That is because the 1K analyzer must now use two
states in the trace buffer for each state captured on the analyzer bus. One of the two
states stores the state information itself. The other state stores the count information
associated with the state information.

The deep analyzer can always store the same maximum number of states in its state
buffer, regardless of whether counting is turned on or off.

By default, the interface displays a maximum of 256 of states. You can increase the
depth of the trace display buffer to display up to the maximum amount of states that
are available for display. The following command increases the trace display depth
to 512 states:

display trace depth 512

By default, the counting function is turned off in the 1K analyzer, and set to time in
the deep analyzer.

anystate This option allows you to set up the counting parameter for the analyzer to count
on any state.

off This option turns off trace counting capability. As previously explained, turning off
counting provides a larger trace depth if using the 1K analyzer.

Chapter 11: Emulator Commands
COUNT

419

QUALIFIER This is defined by you and used with the state option to define the states to be
captured by the analyzer.

state This causes the emulation-bus analyzer to count occurrences of the specified state
during a trace measurement.

time This option causes the emulation-bus analyzer to count the time between states
captured during the trace measurement.

Examples
trace after START counting state LOOP2

trace counting time

See Also
help trace
trace

Chapter 11: Emulator Commands
COUNT

420

display

Chapter 11: Emulator Commands
display

421

You can use the up arrow, down arrow, PREV PAGE, and NEXT PAGE keys
to view the displayed information. For software_breakpoints, data, memory, and
trace displays you can use the CTRL g and CTRL f keys to scroll left and right if
the information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selected for
the previous execution of the display command.

, A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify multiple
variables and types for display with the current command.

data You can display the values of simple data types in your program. This command
saves you time; without it you would need to search through memory displays for
the location and value of a particular variable.

The address, identifier, and data value of each symbol may be displayed. You must
issue the command set symbols on to see the symbol names displayed.

For the first display data command after you begin an emulation session, you must
supply at least one expression specifying the data item(s) to display.

Thereafter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with
a leading comma).

Symbols are normally set off until you give the command set symbols on.
Otherwise, only the address, data type, and value of the data item will be displayed.

error_log This option displays the recorded list of error messages that occurred during the
emulation session.

event_log This option displays the recorded list of events.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
—EXPR— syntax diagram.

Chapter 11: Emulator Commands
display

422

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

global_symbols This option lets you display a list of all global symbols in memory.

Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. When the display
global_symbols command is used, the listing will include the symbol name and its
logical address.

local_symbols_in This option lets you display all the children of a given symbol. Local symbols of
—SYMB— are the ones that are children of the file or scope specified by
—SYMB—. That is, they are defined in that file or scope. Displaying the local
symbols sets the current working symbol to the one specified.

—SYMB— This option represents the symbol whose children are to be listed. See the
—SYMB— syntax diagram and the SRU User’s Guide for more information on
symbol hierarchy and representation.

memory This option allows you to display the contents of memory.

offset_by This option allows you to offset the listed execution breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing.

physical This allows you to specify that the addresses to be displayed are addresses in
physical memory.

pod_command This option lets you display the Terminal Interface screen. You must display the
Terminal Interface screen to view the output of any Terminal Interface (pod
commands) you have used or are going to use. For details, refer to the syntax page
for the pod_command in this chapter.

repetitively This optional part of the display status command causes the emulator status screen
to be updated continuously.

registers This allows you to display the contents of emulation processor registers.

If a step command was just executed, the mnemonic representation of the last
instruction is also displayed (if the current display is the register display). This
process does not occur in real-time. The emulation system must be configured for
nonreal-time operation to display registers while the processor is running. Symbols

Chapter 11: Emulator Commands
display

423

also may be displayed in the register step mnemonic string (refer to set symbols in
this chapter).

With no options specified, the basic register class is displayed. Basic registers
include: PC, STATUS, USP, ISP, MSP, CACR, D0 through D7, A0 through A7,
VBR, DFC, and SFC.

Other registers you can display include:

The FPU registers: FPCR, FPSR, FPIAR, and FP0 through FP7.

The MMU registers: ITT0, ITT1, DTT0, DTT1, MMUSR, TC, SRP, and URP.

<CLASS> This allows you to display a particular class of processor registers.

<REGISTER> This displays an individual register.

simulated_io This lets you display data written to the simulated I/O display buffer after you have
enabled polling for simulated I/O in the emulation configuration.

After you have enabled polling for simulated I/O during the emulation
configuration process, six simulated I/O addresses can be defined. You then define
files used for standard input, standard output, and standard error. For details on
setting up simulated I/O, refer to the question “Modify simulated I/O
configuration?” in Chapter 8, "Configuring the Emulator".

software_
breakpoints

This option lets you display the current list of execution breakpoints in software.

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked “status” shows
whether the breakpoint is temporary, pending, permanent, inactivated, or unknown.
Refer to "Using Execution Breakpoints" in Chapter 4, "Using the Emulator".

An “unknown” breakpoint status will occur if you set the breakpoint, and then
remap the breakpoint address as guarded. A pending breakpoint causes the
processor to enter the emulation monitor or background memory upon execution of
that breakpoint. Executed breakpoints are listed as inactivated.

Breakpoint entries that show an inactive status can be reactivated by executing the
following command:

modify software_breakpoints set

A label column also may be displayed for addresses that correspond to a symbol.
See the set command for details.

Chapter 11: Emulator Commands
display

424

status This displays the emulator and trace status screen.

thru —EXPR— Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensional and multi-dimensional arrays. Arrays are displayed in the order
specified by the language definition, typically row major order for most Algol-like
languages. Including the + operator allows you to specify an address range as an
offset from the ’base’ address specified in —EXPR—.

trace This displays the current trace list.

<TYPE> Specifies the format in which to display the information, as shown in the following
table. (Data type information is not available from the symbol database, so you
must specify it.)

<TYPE> Meaning

byte Hex display of one 8-bit location.

word Hex display of one 16-bit location.

long Hex display of one 32-bit location.

int8 Display of one 8-bit location as a signed integer using
two’s complement notation.

int16 Display of two bytes as a signed integer using two’s
complement notation.

int32 Display of four bytes as a signed integer using two’s
complement notation.

u_int8 Display of one byte as an unsigned positive integer.

u_int16 Display of two bytes as an unsigned positive integer.

u_int32 Display of four bytes as an unsigned positive integer.

char Displays one byte as an ASCII character in the range
0..127. Control characters and values in the range
128..255 are displayed as a period (.).

Chapter 11: Emulator Commands
display

425

Examples
display event_log
display local_symbols_in cmd_rdr.s:
display global_symbols
display local_symbols_in temp1.S:
display local_symbols_in prog68k.S:main
display simulated_io
display software_breakpoints
display software_breakpoints offset_by 1000H
display registers
display registers BASIC

display data Msg_A thru +17 char , Stack long
set symbols on
set width label 30
display data , _clocktic thru +4 char , _duration thru
+4 char

See Also
copy
help copy
help display
help registers
help software_breakpoints
modify registers
modify software_breakpoints
set
step
cws
pws

The following pages describe various display memory, display MMU, and
display trace syntax diagrams.

Chapter 11: Emulator Commands
display

426

DISPLAY MEMORY

Chapter 11: Emulator Commands
DISPLAY MEMORY

427

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will
step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside the currently displayed address range. This feature works
even if stepping is performed in a different emulation window from the one
displaying memory mnemonic (see the discussion on windowing capabilities in
Chapter 3, "Using the Emulator/Analyzer Interface").

Pending execution breakpoints in software are shown in the memory mnemonic
display by an asterisk (*) in the leftmost column of the assembly instruction or
source line that has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See the set command.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previous display memory command.

The symbols and source defaults are:

set source off symbols off

absolute Formats the memory listing in a single column.

at_pc Displays the memory at the address pointed to by the current program counter
value. If you are running a program when you enter this command, the memory
will be displayed at the address pointed to by the program counter at the moment
you enter the command.

blocked Formats the memory listing in multiple columns.

bytes Displays the absolute or blocked memory listing as byte values.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

Chapter 11: Emulator Commands
DISPLAY MEMORY

428

extended Displays memory as 96-bit IEEE-754 real numbers.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

long Displays the memory listing as long word values. When used with the real
parameter, long displays memory in a 64-bit real number format.

mnemonic This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correct. If set source only is on, you will see
only the high level language statements and corresponding line numbers.

offset_by This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

packed Displays memory as 96-bit Motorola-format packed real numbers.

physical This allows you to specify that the addresses to be displayed are addresses in
physical memory.

previous_display Places the previous display window on screen. This token lets you switch the
display back and forth between the previous window and the new window. This is
useful when you are stepping a program in memory and it suddenly jumps to a
different location in memory, changing your display window.

real Formats memory values in the listing as real numbers. (NaN in the display list
means “Not a Number.”)

repetitively Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, because it is very CPU intensive. To
allow updates to the current memory display whenever memory is modified, a file
is loaded, software breakpoint is set, or other feature is used that modifies memory,
use the set update command.

short Formats the memory list as 32-bit real numbers.

Chapter 11: Emulator Commands
DISPLAY MEMORY

429

thru This option lets you specify a range of memory locations to be displayed. Use the
up arrow, down arrow, NEXT PAGE, and PREV PAGE keys to view additional
memory locations.

words Displays the memory listing as word values.

, A comma after memory in the command line appends the current display memory
command to the preceding display memory command. The data specified in both
commands is displayed. The data will be formatted as specified in the current
command. The comma is also a delimiter between values when specifying multiple
addresses.

Examples
display memory 2000h thru 204fh blocked words

display memory 2000h thru 202fh , 2100h real long

display memory 400h mnemonic
set symbols on
set source on
display memory main mnemonic

See Also
copy memory
cws
help display
modify memory
pws
set
store memory

Chapter 11: Emulator Commands
DISPLAY MEMORY

430

DISPLAY MMU

Chapter 11: Emulator Commands
DISPLAY MMU

431

The display mmu_translations command is used to display all of the present
translations for all logical addresses, or for only a limited range of logical
addresses. Further, you can display the details of how a single logical address is
mapped through the tables to its corresponding physical address. Finally, you can
display the details of a single translation table used by a selected logical address.

You can use the display mmu_translations command to view the present set of
valid translations, even when the TC register and the root pointer registers are
invalid. Parameters in the display mmu_translations command let you specify
values to use when none exist in these MMU registers.

<ADDRESS> The address or address range specifies a logical address reference for the MMU
information to be displayed. This takes the form of --EXPR-- (see the --EXPR--
syntax diagram).

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a value, such as an address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

level

all Shows the details of each table for the single address you
specify with this comand. This is the same as ignoring the level
option.

A Shows the content of Table A for the logical address you
included in your command.

B Shows the content of Table B for the logical address you
included in your command.

C Shows the content of Table C for the logical address you
included in your command.

Chapter 11: Emulator Commands
DISPLAY MMU

432

mmu_translations Shows a list of the valid MMU mappings. One entry in the list is allocated for each
page or group of adjacent pages in the system.

tables Shows the details of the translation through the tables for the logical address you
included in your command.

thru Allows you to enter the upper address in a range of addresses.

use_value Lets you specify a value to be used in place of the present content of the TC, SRP,
URP, ITT0, ITT1, DTT0 and DTT1 registers when reading the tables and showing
the address mappings.

Examples Show all of the valid logical-to-physical mappings in the MMU:

display mmu_translations

Show all of the logical-to-physical mappings for logical addresses in the range of
7FF0 through 800F:

display mmu_translations 7ff0H thru 800fH

Show the table details used to translate logical address 400:

display mmu_translations tables 400H

Show the details of Table A used to translate logical address 40FC.

display mmu_translations tables 40fcH level A

Show the present MMU mappings based on a URP register value of 80002000
instead of the present URP register value:

display mmu_translations use_value URP 80002000h

See Also load demmuer (Preparing the deMMUer to reverse MMU translations.)

set demmuer on/off (Obtaining logical or physical addresses in the trace list.)

Chapter 11: Emulator Commands
DISPLAY MMU

433

DISPLAY TRACE

Chapter 11: Emulator Commands
DISPLAY TRACE

434

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

Addresses captured by the analyzer are physical addresses.

The offset_by option subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entry for
offset_by, code that has been relocated (making symbolic information invalid) will
have its addresses set so that symbolic information is again valid. If desired,
offset_by can be used to show instructions in the listed trace at the same addresses
where they appear in the assembled or compiled program listing.

The count parameter lists the current trace of time or state either relative to the
previous event in the trace list or as an absolute count measured from the trigger
event. If time counts are currently selected, the count parameter causes an absolute
or relative time count to be listed. If the current trace contains state counts, a
relative or absolute state count results.

The source parameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0

absolute Lists trace information in hexadecimal format, rather than mnemonic opcodes.

align_data_
from_line

Use this to correct data-alignment problems if you see any in a dequeued trace list.
If you see that the dequeuer has aligned data with the wrong instructions, use this
token to select the correct data alignment by specifying the line that should begin a
data realignment (align_data_from_line 36).

all_cycles Used to specify that all cycles should be included in the inverse assembled
information shown in the trace list.

Chapter 11: Emulator Commands
DISPLAY TRACE

435

count

absolute This lists the state or time count for each event of the trace as
the total count measured from the trigger event.

relative This lists the state or time count for each event of the trace as
the count measured relative to the previous event.

depth

<DEPTH#> This defines the number of states to be uploaded by the Softkey
Interface.

After you have changed the trace depth, execute the command
wait measurement_complete before displaying the trace.
Otherwise the new trace states will not be available.

dequeue This obtains a trace list showing the activity of the emulation processor during the
trace. Unused prefetches are eliminated from this display, and data transactions are
aligned with the instructions that caused them to occur.

disassemble_from_
line_number

This causes the inverse assembly software to begin disassembling the trace code
from the specified line number. This feature is required for processors where the
inverse assembler cannot uniquely identify the first state of an instruction on the
processor bus. The command is not available on emulators where the corresponding
inverse assembler can identify instructions on the processor bus.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

high_word Causes inverse assembly to begin with the opcode in the high word of the long
word located in the specified trace-memory line number.

instructions_only Causes the trace list to contain only those lines that show an instruction opcode.

<LINE#> When used alone, this is the trace list line number to be centered in the display.
When used with disassemble_from_line_number, this is the line number from
which the inverse assembler attempts to disassemble data in the trace list. When
used with align_data_from_line, this is the line number from which to begin
aligning data. The line number specified for data alignment must be the same as, or
higher than, the line number specified for the beginning of the trace disassembly.

Chapter 11: Emulator Commands
DISPLAY TRACE

436

low_word Causes inverse assembly to begin with the opcode stored in the low word of the
long word at the specified trace memory line number.

mnemonic Lists trace information with opcodes in mnemonic format.

offset_by This option allows you to offset the listed address value from the address of the
instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using the set source only command, the analyzer may operate more
slowly than when using the set source on command. This is an operating
characteristic of the analyzer:

When you use the command set source on, and are executing only assembly
language code (not high-level language code), no source lines are displayed.
The trace list will fill immediately with the captured assembly language
instructions.

When using set source only, no inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

In conclusion, you should not set the trace list to set source only when tracing
assembly code. This will result in optimum analyzer performance.

status

binary Lists absolute status information in binary form.

hex Lists absolute status information in hexadecimal form.

mnemonic Lists absolute status information in mnemonic form.

Chapter 11: Emulator Commands
DISPLAY TRACE

437

Examples
display trace count absolute

display trace absolute status binary

set source on
display trace mnemonic set source only

See Also
copy trace
help display
help trace
store trace
set

Chapter 11: Emulator Commands
DISPLAY TRACE

438

end

You can end the emulation session and leave the emulator in one of three states.

• You can exit the interface and leave the emulator in a continue state which
allows you to re-enter the emulation session.

• You can exit the interface and leave the emulator in a locked state so that it
cannot be accessed by other users.

• You can exit the interface and release the emulator for use by others.

Pressing CNTL d performs the same operation as pressing end .

Pressing CNTL \ or CNTL | performs the same as end release_system .

end If the command is specified without any options, two different things can occur.
What occurs depends on whether the interface instance being ended is the only one
currently executing. If it is, then this command ends the interface, but leaves the
emulator in a continue state. The interface, if restarted, will reload the last
configuration used.

If the interface instance is one of several into the same emulation session, then the
end command ends the interface instance where the end is issued. Other interface
instances into the same emulation session are not affected.

locked This option allows you to stop all active instances of an emulator Softkey Interface
session in one or more windows or terminals. When the emulation session ends,
control returns to the UNIX shell, but the emulator is still locked to your user id
and is not available to others.

release_system This option stops all instances of the Softkey Interface in one or more windows or
terminals. The emulation system is released for other users. If you do not release
the emulation system, others cannot access it.

Chapter 11: Emulator Commands
end

439

Examples
end

end locked

end release_system

See Also
emul700 <emulator_name>
help end

Chapter 11: Emulator Commands
end

440

—EXPR—

The function of an expression (—EXPR—) is to let you define the address, data, or
status expression that fits your needs. You can combine multiple values to define
the expression.

Some emulation commands will allow the option of <+EXPR> after pressing a thru
softkey. This allows you to enter a range without retyping the original base address
or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

DON’T CARE
NUMBER

You can include “don’t care numbers” in expressions. These are indicated by a
number containing an “x.” These numbers may be defined as binary, octal,
decimal, or hexadecimal. For example: 1fxxh, 17x7o, and 011xxx10b are valid.

“Don’t care numbers” are not valid for all commands.

—NORMAL— This appears as a softkey label to enable you to return to the —EXPR— key. The
—NORMAL— label can be accessed whenever defining an expression, but is only
valid when “C” appears on the status line, which indicates a valid expression has
been defined.

<NUMBER> This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

Chapter 11: Emulator Commands
—EXPR—

441

<OP> This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

Operator Description

mod
*
/
&
+
-
|

modulo
multiplication
division
logical AND
addition
subtraction
logical OR

—SYMB— This allows you to define symbolic information for an address, range of addresses,
or a file. See the —SYMB— syntax pages and the SRU User’s Guide for more
information on symbols.

end This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addresses, end will
represent the last address in that range.

start This displays the first memory location where the symbol you specify may be
located. For example, if a particular symbol is associated with a range of addresses,
start will represent the first address in that range.

<UNARY> This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign (~).

() Parentheses may be used in expressions to enclose numbers. For every opening
parenthesis, a closing parenthesis must exist.

When “C” appears on the right side of the status line, a valid expression exists. The
—NORMAL— key can be accessed at any time, but is only valid when “C” is on
the command line.

Chapter 11: Emulator Commands
—EXPR—

442

Examples
05fxh
DISP_BUF + 5
SYMB_TBL + (OFFSET / 2)
START
cprog.C: line 15 end

See Also
help expressions
SYMB

Chapter 11: Emulator Commands
—EXPR—

443

FCODE

The function code is used to define the address space being referenced. Select the
appropriate function code from those listed below.

none Causes the emulator to use the default supervisor address space.

super Supervisor address space.

user User address space.

Examples To copy a portion of user address space to a file:

copy memory fcode user 1000H thru 1fffH to mymem

To modify a location in supervisor address space:

modify memory fcode super 5000h long to 12345678h

Chapter 11: Emulator Commands
FCODE

444

HELP

Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.

The help command is not displayed on the softkeys. You must enter it at the
keyboard. You may use a question mark in place of help to access the help
information.

<HELP_FILE> This represents the name of one of the available help files on the softkey labels.
You can either press the softkey that represents the desired help file, or type in the
help file name. If you are typing in the help file name, make sure you use the
complete syntax. Not all of the softkey labels reflect the complete file name.

Examples
help system_commands
? run

To display information about the command named pod_command, enter:

help pod_command

Chapter 11: Emulator Commands
HELP

445

load

The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.

Chapter 11: Emulator Commands
load

446

Any file specified by <FILE> cannot be named “configuration”, “emul_mem”,
“user_mem”, “symbols”, “trace”, or “trace_spec” because these are reserved words,
and are not recognized by the emulation system as ordinary file names.

The absolute file is loaded into emulation memory by default.

configuration This option specifies that a previously created emulation configuration file will be
loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

demmuer This option causes the emulator to read the MMU registers and MMU tables and
load the deMMUer with appropriate information to reverse-translate the physical
addresses it receives from the emulation bus so it can deliver corresponding logical
addresses to the analyzer.

emul_mem Load the file into emulation memory hardware.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

<FILE> This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

noabort This option allows you to load a file even if part of the file is located at memory
mapped as “guarded” or “target ROM” (trom).

nosymbols This option causes the file specified to be loaded without symbols.

offset_by This option allows you to offset the listed address values from the actual addresses.
The offset value you specify will be subtracted from the actual addresses.

symbols This option causes the file specified to be loaded with symbols.

trace This option allows you to load a previously generated trace file.

trace_spec This option allows you to load a previously generated trace specification.

The current trace specification will be modified, but a new trace will not be started.
To start a trace with the newly loaded trace specification, enter trace again or
specify trace again (not trace). If you specify trace, a new trace will begin with
the default trace specification, not the one you loaded.

Chapter 11: Emulator Commands
load

447

use_value Lets you specify a value to be used in place of the present content of the TC, SRP,
URP, ITT0, ITT1, DTT0, and DTT1 registers when reading the tables to determine
the reverse translations.

user_mem Load the file into user (target system) memory hardware.

verbose This options sets the verbose mode for the deMMUer load function. The verbose
mode shows a list of the physical address that can be translated by the deMMUer
after loading the deMMUer. If these address translations include function codes,
the function codes are shown beside the addresses (example:
000000000..003ffffff@s).

Examples
load sort1

load configuration config3

load trace trace3

load demmuer verbose

See Also
display trace
display mmu_translations
help load

Chapter 11: Emulator Commands
load

448

log_commands

A command file is an ASCII file containing Softkey Interface commands. The
interface can read a command file and execute its commands as if they were typed
into the command line. Simply type the filename on the command line.

This interface command lets you create command files by logging. When the
interface is in logging mode, all commands entered and executed on the command
line are also copied to the named file. Once started, logging continues until either
logging is turned off or the emulation session is ended.

The log_commands command is not on the softkeys. You must type it into the
command line to access the remainder of the log_commands softkeys. See the
User’s Guide for information about entering Softkey Interface commands.

<FILE> This represents the file where you want to store interface commands. If the file does
not exist, a new file is created. If the file already exists, the new commands are
appended to the present content in the file, unless the noappend option is specified.

off This option stops command logging.

noappend If the named file is an existing file, this option causes the new commands to
overwrite any information present in the file. If this option is not specified, new
commands are appended to the existing contents of the file.

Examples
log_commands to logfile

log_commands off

See Also
help system_commands

Chapter 11: Emulator Commands
log_commands

449

modify

Chapter 11: Emulator Commands
modify

450

The modify command is used to:

• View or edit the current emulation configuration.

• Modify the contents of memory (as integers, strings, or real numbers).

• Modify the contents of the processor registers.

• Write specified values to I/O port addresses.

• Modify the software breakpoints table.

bytes Modify using byte values.

<CLASS> This represents the name of a processor register class. The register classes are also
displayed on the softkey labels. See the "register" option for more information.

clear This option erases the specified breakpoint address and restores the original content
of the memory location. (The location must not have changed (by loading a file or
modifying memory) after the breakpoint was set.) If no breakpoints are specified in
the command, all currently specified breakpoints are cleared and the memory
locations are restored to their original values.

, A comma is used as a delimiter between values when modifying multiple values.

configuration The configuration questions are presented in sequence with either the default
response, or the previously entered response. You can select the currently
displayed response by pressing the carriage return key. Otherwise, you can modify
the response as you desire, and then press the carriage return key.

For each emulator, default responses defined on powerup are displayed. For more
information see Chapter 8, "Configuring the Emulator".

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a value. See the —EXPR— syntax diagram.

extended This option allows you to modify memory as 96-bit IEEE real numbers.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

force_hw This option forces the emulator to use one of its eight hardware resources to store
the breakpoint instead of writing it in software, if possible.

Chapter 11: Emulator Commands
modify

451

keyboard_to_simio When the keyboard is activated for simulated I/O, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the softkey labeled
“suspend” is displayed on your screen. Pressing suspend and the carriage return
key will deactivate keyboard simulated I/O and return the keyboard to normal
emulation mode. For details about setting up simulated I/O on your HP 9000 host
computer system, refer to the Simulated I/O User’s Guide.

long Modify memory as long word values. When used with the real parameter, long
specifies that memory be modified as a 64-bit IEEE-754 real number value.

memory You can modify the contents of individual memory locations to individual values,
or you can modify a range of memory to a single value or a sequence of values.

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of the
next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory modification is done by entering the limits of the memory
range to be modified (—EXPR— thru —EXPR—) and the value or list of values
(—EXPR—, ... , —EXPR—) to which the contents of all locations in the range are
to be changed.

If the specified address range is not large enough to contain the new data, only the
specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

Memory modifications of integer values use the currently set display memory
mode. Byte is the default.

Memory modifications of "real" values use the currently set display memory mode.
Short is the default.

Chapter 11: Emulator Commands
modify

452

packed This option allows you to modify memory as 96-bit Motorola-format packed real
numbers.

permanent This option allows you to set a software breakpoint that remains at the breakpoint
address and causes a break each time it is hit during execution. It is not
automatically replaced by the target-program instruction when it is hit. Permanent
breakpoints can only be set if your version of HP 64700 system firmware is
A.04.00 or greater.

physical This allows you to specify that the addresses to be modified are addresses in
physical memory.

real Modify memory as real number values.

<REAL#> This prompts you to enter a real number as the value.

register The entry you specify for <REGISTER> determines which register is modified.

Register modification cannot be performed during real-time operation of the
emulation processor. A break command, or a condition that causes the emulator to
break to the monitor, must occur before you can modify registers.

Basic registers include: PC, STATUS, USP, ISP, MSP, CACR, D0 through D7,
A0 through A7, VBR, DFC, and SFC.

The FPU registers include: FPCR, FPSR, FPIAR, and FP0 through FP7.

The MMU registers include: ITT0, ITT1, DTT0, DTT1, MMUSR, TC, SRP, and
URP.

<REGISTER> This represents the name of a register that you specify.

set This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

short Modify memory values as 32-bit IEEE-754 real numbers.

software
_breakpoints

Software breakpoints allow you to stop execution of your target program and begin
execution in the monitor when the breakpoint instruction is executed. Any valid
address (number, label, or expression) may be specified as a breakpoint. Valid
addresses identify the first byte of valid instructions. Operation of the program can
be resumed after the breakpoint is encountered by specifying either a run or step
command.

Chapter 11: Emulator Commands
modify

453

While the memory mnemonic display is on screen, execution breakpoints are
indicated by an “* ” in the leftmost column of the instruction containing the
breakpoint.

Do not modify execution breakpoints while your target program is running. If you
do, program execution may be unpredictable.

You must enable breakpoints before you can perform an action on them.

When you set breakpoints, the emulator will search through the existing breakpoint
list and reactivate all entries that are inactivated.

When you clear breakpoints, the entire execution breakpoint list is deleted and
memory is restored to its original values.

disable This option turns off the execution breakpoint capability.

enable This option allows you to modify the execution breakpoint
specification.

string Modify memory values to the ASCII character string given by <STRING>.

<STRING> A quoted ASCII string, which may include the following special characters:

null
newline
horizontal tab
backspace
carriage return
form feed
backslash
single quote
bit pattern

\0
\n
\t
\b
\r
\f
\\
\’
\OOO (where OOO is
an octal number)

temporary This option allows you to set an execution breakpoint that is in effect only the first
time it is hit during execution. It is automatically replaced by the target-program
instruction when it is hit. Temporary breakpoints (the default breakpoints) differ
from permanent breakpoints which can only be set if your version of HP 64700
system firmware is A.04.00 or greater.

thru This option lets you specify a range of memory locations to be modified.

to This lets you specify values to which the selected memory locations or register will
be changed.

Chapter 11: Emulator Commands
modify

454

words This lets you modify memory in word format.

Examples
modify configuration

modify keyboard_to_simio

modify memory 00A0H words to 1234H

modify memory DATA1 bytes to 0E3H , 01H , 08H

modify memory DATA1 thru DATA100 to 0FFFFH

modify memory 0675H real to -1.303

modify memory TEMP real long to 0.5532E-8

modify memory buffer string to “This is a test \n\0"

display memory blocked bytes

modify memory Msg_Dest thru +50 to 41h, 42h, 43h

modify memory Msg_Dest string to “HP 64000 Softkey
Interface”

modify memory Msg_Dest thru +50 to 0

modify register D0 to 9H

modify register BASIC PC to 2000H

modify software_breakpoints enable

modify software_breakpoints clear 99H , 1234H

modify software_breakpoints set LOOP1 END ,
LOOP2END , 0EH

Chapter 11: Emulator Commands
modify

455

modify software_breakpoints set

See Also
copy memory
copy registers
copy software_breakpoints
display memory
display registers
display software_breakpoints
help modify
help registers
help software_breakpoints
modify registers
store memory

Chapter 11: Emulator Commands
modify

456

performance_measurement_end

This command stores data previously generated by the
performance_measurement_run command, in a file named “perf.out" in the
current working directory.

The file named “perf.out” is overwritten each time this command is executed. This
command does not alter current measurement data in the emulation system.

Example
performance_measurement_end

See Also
help performance_measurement_initialize
help performance_measurement_run
performance_measurement_initialize
performance_measurement_run

Chapter 11: Emulator Commands
performance_measurement_end

457

performance_measurement_initialize

This command sets up performance measurements. The emulation system will
verify whether a symbolic database has been loaded. If a symbolic database has
been loaded, the performance measurement is set up with the addresses of all global
procedures and static symbols. If a valid database has not been loaded, the system
will default to a predetermined set of addresses, which covers the entire emulation
processor address range.

The measurement will default to “activity” mode.

Default values will vary, depending on the type of operation selected, and whether
symbols have been loaded.

activity This option causes the performance measurement process to operate as though an
option is not specified.

duration This option sets the measurement mode to “duration.” Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

<FILE> This represents a file you specify to supply user-defined address or time ranges to
the emulator.

global_symbols This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

Chapter 11: Emulator Commands
performance_measurement_initialize

458

local_symbols_in This uses local symbols as the default ranges for the measurement.

restore This restores old measurement data so that the current measurement can be
continued when using the trace command used previously.

—SYMB— This represents the source file that contains the local symbols to be listed. This also
can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

Examples
performance_measurement_initialize

performance_measurement_initialize duration

performance_measurement_initialize local_symbols_in
prog68k.S:

See Also
help performance_measurement_initialize
help performance_measurement_run
performance_measurement_run
performance_measurement_end

Chapter 11: Emulator Commands
performance_measurement_initialize

459

performance_measurement_run

This command begins a performance measurement. It causes the emulation system
to reduce trace data contained in the emulation-bus analyzer. The resulting data is
used for analysis by the performance measurement software.

The default is to process data presently contained in the analyzer.

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified by
the COUNT option.

The trace command must be set up correctly for the requested measurement. For an
activity measurement, you can use the default trace command (trace counting
time).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples
performance_measurement_run 10

performance_measurement_run

See Also
help performance_measurement_initialize
help performance_measurement_run
performance_measurement_end
performance_measurement_initialize

Chapter 11: Emulator Commands
performance_measurement_run

460

pod_command

The HP 64700 Series emulators contain a low-level Terminal Interface, which
allows you to control the emulator’s functions directly. You can issue Terminal
Interface commands through the Softkey Interface by using pod_command. With
pod_command, you can issue a single command, or enter the keyboard mode
which allows you to enter a series of commands.

The MC68040/EC040/LC040 Emulator/AnalyzerTerminal Interface User’s Guide
is an excellent source of information about using the Terminal Interface to control
the emulator. There are certain commands you should avoid while using the
Terminal Interface through pod_command, however, because these commands can
affect the operation of the Softkey Interface. See the User’s Guide and the Terminal
Interface screen for more information about Terminal Interface commands that
should not be used.

Although you can issue Terminal Interface commands via this command, you
cannot see the results of those commands unless you display the Terminal Interface
screen with display pod_command.

keyboard Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. Use display pod_command to see the
results returned from the emulator.

<POD_CMD> Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press the carriage return key.

suspend This command is displayed once you have entered keyboard mode. Select it to stop
interactive access to the Terminal Interface and return to the Softkey Interface.

Chapter 11: Emulator Commands
pod_command

461

Examples This example shows a simple interactive session with the Terminal Interface.

display pod_command
pod_command keyboard

cf

tsq

tcq

Enter suspend to return to the Softkey Interface.

See Also
display pod_command
help pod_command

Also see the MC68040/EC040/LC040 Emulator/AnalyzerTerminal Interface User’s
Guide.

Chapter 11: Emulator Commands
pod_command

462

QUALIFIER

The QUALIFIER parameter is used with trace only, trace prestore, TRIGGER ,
and trace counting to specify states captured during the trace measurement.

You may specify a range of states or specific states to be captured. You can specify
a unique combination of address/data/status values as conditions for the trace
measurement. You can continue to “or” states until the analyzer resources are
depleted. You can use only one ’range’ statement in the entire trace command.

You can include “don’t care numbers.” These contain an “x” preceded or followed
(or both) by a number. Some examples include 1fxxh, 17x7o, and 011xxx10b.
“Don’t care numbers” may be entered in binary, octal, or hexadecimal base.

Expression types are “address” when none is chosen. The default is to qualify on
all states.

address This specifies that the expression following is an address value. This is the default,
and is therefore not required on the command line when specifying an address
expression.

and This lets you specify a combination of status and expression values when status is
specified in the state specification.

Chapter 11: Emulator Commands
QUALIFIER

463

data This specifies that the expression that follows is a data value on the emulation
processor data bus.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, or status value. See the EXPR syntax
diagram.

long_aligned Causes a mask to be applied to the address to force it to a long word boundary
(least significant hex digit is 0, 4, 8, or C). This is necessary because the
emulation-bus analyzer may not otherwise see the address on the address bus due to
the way the processor fetches instructions.

not This specifies that the analyzer search for the logical “not” of the specified range or
state, that is addresses not in the specified range or an address not in the specified
state.

or This option allows you to specify multiple states to be captured during a trace
measurement.

range This indicates a range of addresses to be specified (—EXPR— thru —EXPR—).

status This specifies that the expression following, or status word, is a status value for the
processor.

<STATUS> This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be include
symbols, operators, and parentheses. See the EXPR syntax diagram. Refer to
Chapter 5, "Using the Emulation-Bus Analyzer", for a list of predefined status
equates that cover common processor operations.

Chapter 11: Emulator Commands
QUALIFIER

464

thru This indicates that the following address expression is the upper address in a range.

Examples
trace only address prog68k.S:READ_INPUT

trace only address range prog68k.S:READ_INPUT thru
OUTPUT

trace only address range prog68k.S:CLEAR thru
READ_INPUT

Also see the trace command examples.

See Also
help trace
trace

Chapter 11: Emulator Commands
QUALIFIER

465

reset

This command suspends target system operation and asserts the reset signal on the
emulation processor. The reset signal is latched when the reset command is
executed, and is released by either the run or break command.

Example
reset

See Also
help reset

Chapter 11: Emulator Commands
reset

466

run

This command causes the emulator to execute a program. If the processor is in the
reset state, run releases the reset condition. If you specify run from —EXPR— or
run from transfer_address, the processor is directed to the particular address. If
the processor is running in the emulation monitor or background memory, a run
command causes the processor to exit into your program. The program can either
run from a specified address (—EXPR—), from the address stored in the emulation
processor program counter, or from a label specified in the program.

For an explanation of how the emulator runs from a reset condition (using the run
from reset command), refer to the paragraph titled "To run a program" in Chapter
4, "Using the Emulator".

If you omit the address option (—EXPR—), the emulator begins program
execution at the current address specified by the emulation processor program
counter. If an absolute file containing a transfer address has just been loaded,
execution starts at that address.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

from This specifies the address where program execution is to begin.

reset This option starts the processor executing from the reset vector address.

Chapter 11: Emulator Commands
run

467

transfer_address This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map.

until Specifies an address where execution is to stop. The emulator will execute your
target program up to the point where the until address is found. Execution will
stop at the until address, and the emulator will begin executing the emulation
monitor.

Examples
run

run from 810H

run from COLD_START

run from TEST_START until TEST_POINT_1

See Also
help run
help step
step

Chapter 11: Emulator Commands
run

468

SEQUENCING

Sequencing provides you with parameters for the trace command that let you
define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.

The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.

find_sequence Specifies that you want to use the analysis sequencer. You must enter at least one
qualifier.

QUALIFIER Specifies the address, data, or status value or value range that will satisfy this
sequence term if looking for a sequence (find_sequence), or will restart at the
beginning of the sequence (restart). See the QUALIFIER syntax pages for further
information.

occurs Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. See the WINDOW syntax pages.

<#TIMES> Prompts you for the number of times a qualifier must be found.

then Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Chapter 11: Emulator Commands
SEQUENCING

469

restart Selects global restart. If the analyzer finds the restart qualifier while searching for a
sequence term, the sequencer is reset and searching begins for the first sequence
term.

Examples The following example uses symbols from an imaginary program that performs a
series of tests in sequence. Occasionally test2 completes but does not start test3
(instead, it jumps directly to test 9). The following trace command would be used
to capture a trace only when the program fails to step from test2 to test 3 so you
could look at activity associated with this program failure:

display trace

trace find_sequence test1 then test2 restart test3
trigger about not range test3 thru test3 end

See Also
trace
QUALIFIER
WINDOW
help trace

Chapter 11: Emulator Commands
SEQUENCING

470

set

Chapter 11: Emulator Commands
set

471

With the set command, you can adjust the display format results for various
measurements, making them easier to read and interpret.

Formatting of source lines, symbol display selection and width, and update after
measurement can be modified to your needs.

The display command uses the set command specifications to format measurement
results for the display window.

Another option to the set command, <ENV_VAR> = <VALUE> , allows you to
set and export system variables.

The default display format parameters are the same as those set by the commands:

set update
set source off symbols off

You can return the display format to this state by simply using the command:

set default

default This option restores all the set options to their default settings.

demmuer

on This option turns on the deMMUer. Addresses on the
emulation bus will be reverse-translated (physical to logical)
before being supplied to the analyzer. Reverse translations will
be made according to the setup that was present in the MMU at
the time you entered your last load demmuer command.

off This option turns off the deMMUer. Addresses on the
emulation bus will be supplied directly to the analyzer without
translation.

<ENV_VAR> Specifies the name of an environment variable to be set within the HP 64000-UX
environment or the system environment.

= The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

Chapter 11: Emulator Commands
set

472

inverse video

off This displays source lines in normal video.

on This highlights the source lines on the screen (dark characters
on light background) to differentiate the source lines from other
data on the screen.

langinfo In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The command display local_symbols_in main would cause an
error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to be main(procedure). With langinfo ADA, SRU will interpret the
above command to be main(module).

C Identifies ANSI C as the language so SRU can use the C
hierarchy to disambiguate symbols.

ADA Identifies ADA as the language so SRU can use the ADA
hierarchy to disambiguate symbols.

C_IEE695 Identifies C_IEEE-695 as the language so SRU can use the
C_IEEE-695 hierarchy to disambiguate symbols.

Note An alternate method for making the langinfo specification is to use the environment
variable, HP64SYMORDER. By making the following entry in your .profile, the
langinfo setting will always be C, for example.

HP64SYMORDER=C #I want to use the C disambiguating hierarchy
export HP64SYMORDER #let children processes know about it

memory Specifies the type of display to be updated or not updated.

noupdate This option stops the display buffer in a window or terminal from updating when a
new measurement completes. Without this option, displays that show memory
contents are updated when a command executes that changes the values in memory
(such as modify memory or load).

Chapter 11: Emulator Commands
set

473

number_of_
source_lines

This allows you to specify the number of source lines to be displayed above the
program instructions or trace data to which they correlate. Displays may contain
several blocks of source lines, with each block followed by program code or
emulation-bus activity. Each block of source lines can begin with the next source
line following the preceding block. If a particular block contains a lot of comment
lines, the block can become very big. This option lets you specify a number to limit
the size of the blocks of source lines. The default value is 5.

<NUMSRC> This prompts you for the number of source lines to be displayed. Enter a value from
1 through 50.

source

memory_only_
trace_on

This provides a way to default the memory and trace displays to
a setting that HP believes is the nicest possible formats for
memory and trace displays. Parameters such as "source
on/only", number of source lines to show, display width, and
turning symbols on are all governed by this one selection. With
this selection, memory displays will show the maximum
available source lines preceding each block of code, and trace
lists will show five source lines preceding trace data.

off This option prevents inclusion of source lines in the trace and
memory mnemonic display lists.

on This option displays source program lines preceding the
processor instructions to which they correlate. This enables you
to correlate processor instructions with source program code.
The option is available in both the trace list and memory
mnemonic displays.

only This option displays only source lines. Processor instructions
are only displayed in memory mnemonic if no source lines
correspond to the instructions. Processor instructions are never
displayed in the trace list.

Chapter 11: Emulator Commands
set

474

symbols

off Prevents symbol display.

on Displays symbols. This option works for the trace list, memory,
software breakpoints, and register step mnemonics.

high Displays only high level symbols, such as those available from
a compiler. See the Symbolic Retrieval Utilities User’s Guide
for a detailed discussion of symbols.

low Displays only low level symbols, such as those generated
internally by a compiler or an assembler.

all Displays all symbols.

tabs_are This option allows you to define the number of spaces inserted for tab characters in
the source listing.

<TABS> Prompts you for the number of spaces to use in replacing the tab
character. Enter values in the range of 2 through 15.

trace Specifies the type of display to be updated or not updated.

update When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

<VALUE> Specifies the logical value to which a particular UNIX or HP 64000-UX system
environment variable is to be set.

width

source This allows you to specify the width (in columns) of the source
lines in the memory mnemonic display. To adjust the width of
the source lines in the trace display, increase the widths of the
label or mnemonic fields, or both fields.

label This lets you specify the address width (in columns) of the
address field in the trace list or label (symbols) field in any of
the other displays.

Chapter 11: Emulator Commands
set

475

mnemonic This lets you specify the width (in columns) of the mnemonic
field in memory mnemonics, trace list and register step
mnemonics displays. It also changes the width of the status field
in the trace list.

symbols This lets you specify the maximum width of symbols in the
mnemonic field of the trace list, memory mnemonic, and
register step mnemonic displays.

<WIDTH> This prompts you for the column width of the source, label,
mnemonic, or symbols field.

<CTRL>f and <CTRL>g may be used to shift the display left or
right to display information which is off the screen.

Examples
set noupdate

set source on inverse_video on tabs_are 2

set symbols on width label 30 mnemonic 20

set PRINTER = “lp -s”

set HP64KSYMBPATH=".file1:proc1
.file2:proc2:code_block_1"

See Also
display data
display memory
display software_breakpoints
display trace

Chapter 11: Emulator Commands
set

476

specify

This command prepares a run or trace command for execution, and is used with
the cmb_execute command. When you precede a run or trace command with
specify, the system does not execute your command immediately. Instead, it waits
until you enter a cmb_execute command.

If the processor is reset and no address is specified, a cmb_execute command will
run the processor from the “reset” condition.

The run specification is active until you enter specify run disable. The trace
specification is active until you enter another trace command without the specify
prefix.

The emulator will run from the current program counter address, unless otherwise
directed.

disable This option turns off the specify condition of the run process.

Chapter 11: Emulator Commands
specify

477

from

—EXPR— This is used with the specify run from command. An
expression is a combination of numeric values, symbols,
operators, and parentheses specifying a memory address. See
the EXPR syntax diagram.

FCODE The function code used to define the address space being
referenced. See the syntax diagram for FCODE to see a list of
the function codes available and for an explanation of those
codes.

transfer
_address

This is used with the specify run from command, and
represents the address from which the program will begin
running.

run This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

TRACE This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

until Specifies an address where program execution is to stop. The emulator will stop
execution of your program when it reaches this address and enter the monitor.

Examples
specify run from START

specify trace after address 1234H

See Also
cmb_execute
help specify

Chapter 11: Emulator Commands
specify

478

step

The step command allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after each step command.

Source line stepping is implemented by single stepping through assembly
instructions until the next PC is beyond the address range of the current source line.
When attempting source line stepping on assembly code (with no associated source
line), stepping will complete when a source line is found. Therefore, stepping only
assembly code may step indefinitely. To abort stepping, type <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that will
step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic (see the discussion on opening and using other
interface windows in Chapter 3, "Using the Emulator/Analyzer Interface").

If no value is entered for <NUMBER> times, only one step instruction is executed
each time you press the carriage return key. Multiple instructions can be executed
by holding down the carriage return key. Also, the default step is for assembly code
lines, not source code lines.

If the from address option (defined by —EXPR— or transfer_address) is omitted,
stepping begins at the next program counter address.

—EXPR— An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.

Chapter 11: Emulator Commands
step

479

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

from Use this option to specify the address from which program stepping begins.

<NUMBER> This defines the number of instructions that will be executed by the step command.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.

silently This option updates the register step mnemonic only after stepping is complete.
This will speed up instruction stepping. The default is to update the register step
mnemonic after each assembly instruction (or source line) executes (if stepping is
performed in the same window as the register display).

transfer_address This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

source This option performs stepping on source lines.

Examples
step

step from 810H

step 20 from 0A0H

step 5 source

step 20 silently

step 4 from main

See Also
help step
display registers
display memory mnemonic
set symbols

Chapter 11: Emulator Commands
step

480

stop_trace

This command terminates the current trace and stops execution of the current
measurement. The analyzer stops searching for trigger and trace states. If trace
memory is empty (no states acquired), nothing will be displayed.

Example
stop_trace

See Also
help stop_trace
trace

Chapter 11: Emulator Commands
stop_trace

481

store

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file. A new file is
created with the name you specify, if there is not already an absolute file with the
same name. If a file represented by <FILE> already exists, you must decide
whether to keep or delete the old file. If you respond with yes to the prompt, the
new file replaces the old one. If you respond with no, the store command is
canceled and no data is stored.

The transfer address of the absolute file is set to zero.

demmuer This causes the emulator to read the content of the MMU tables and store the
appropriate demmuer setup in a file you name, with a .ED extension.

—EXPR— This is a combination of numeric values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

<FILE> This represents a file name you specify for the absolute file identifier or trace file
where data is to be stored. If you want to name a file beginning with a number, you

Chapter 11: Emulator Commands
store

482

must precede the file name with a backslash (\) so the system will recognize it as a
file name.

memory This causes selected memory locations to be stored in the specified file with a .X
extension.

thru This allows you to specify that ranges of memory be stored.

to Use this in the store memory command to separate memory locations from the file
identifier.

trace This option causes the current trace data to be stored in the specified file with a .TR
extension.

trace_spec This option stores the current trace specification in the specified file with a .TS
extension.

, A comma separates memory expressions in the command line.

Examples
store memory 800H thru 20FFH to TEMP2

store memory EXEC thru DONE to \12.10

store trace TRACE

store trace_spec TRACE

store demmuer MMUTEST1

See Also
display memory
display trace
help store
load

Chapter 11: Emulator Commands
store

483

= —SYMB—

Chapter 11: Emulator Commands
—SYMB—

484

This parameter is a symbolic reference to an address, address range, file, or other
value. Symbols may be:

• Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

• Combinations of paths, filenames, and line numbers referencing a particular
source line.

• Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify unique symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and re-enter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is available in the
SRU User’s Guide. Also refer to that manual for information on the
HP64KSYMBPATH environment variable.

The last symbol specified in a display local_symbols_in —SYMB— command, or
with the cws command, is the default symbol scope. The default is “none” if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command on
the command line and following it with a symbol name. The pws command
displays the current working symbol on the status line.

The display memory mnemonic command also can modify the current working
symbol.

If no default file was defined by executing the command display local_symbols_in
—SYMB—, or with the cws command, a source file name (<FILE>) must be
specified with each local symbol in a command line.

entry_exit_range The range of addresses beginning with the entry point and ending with the return
instruction. The entry point is the address used by other files when they call this
procedure.

Chapter 11: Emulator Commands
—SYMB—

485

<FILENAME> This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other
parameters (such as line) in the —SYMB— specification expect a file.

line This specifies that the following numeric value references a line number in the
specified source file.

<LINE#> Prompts you for the line number of the source file.

<IDENTIFIER> This is the name of an identifier as declared in the source file.

SCOPE Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

segment This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

<SEG_NAME> Prompts you for entry of the segment name.

text_range The range of addresses beginning with the lowest address occupied by any code in
the procedure and ending with the highest address occupied by any code in the
procedure. Normally, the text_range will be the same as the entry_exit_range;
some compilers may rearrange code so that the return instruction (for example) is
not at the highest address in the range occupied by code of the procedure.

(<TYPE>) When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a space
between the identifier name and the type specification. The type will be one of the
following:

filename Specifies that the identifier is a source file.

fsegment This provides an alternate way to reference a file segment in a
command (example: myfile.c:PROG(fsegment)). It is better to
use the keyword segment (example: myfile.c: segment
PROG). The "segment" keyword is preferred because it will
do scanning for PROG, Prog, prog, and other expressions of the
program segment in the example line. The fsegment keyword
will only scan for the one expression (PROG).

module These refer to module symbols. For most C compilers, these
names derive from the source file name. For Ada, they are

Chapter 11: Emulator Commands
—SYMB—

486

packages. Other language systems may allow user-defined
module names.

procedure Any procedure or function symbol. For languages that allow a
change of scope without explicit naming, SRU assigns an
identifier and tags it with type procedure.

prospecial Prospecial symbols are symbols that were created by the HP
SRU (such as entry, exit, and return). They are derived
symbols, not intended for the product user. Typical prospecial
symbols would be entry1, entry2, and entry3 in a procedure that
has three possible entry points.

static Static symbols, which include global variables. The logical
address of these symbols will not change.

task Task symbols, which are specifically defined by the processor
and language system in use.

: A colon is used to delimit the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there must
be a space after the colon. For a symbol, there must not be a space after the colon.

Chapter 11: Emulator Commands
—SYMB—

487

Examples The following C code example is provided to help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.

File /users/dave/control.c contains:
int *port_one;

main()
{
 int port_value;

 port_one = 255;
 port_value = 10;
 process_port (port_one, port_value);
} /* end main */

File /users/project1/porthand.c contains:
#include “utils.c”

process_port (int *port_num, int port_data)
{
 static int i;
 static int i2;

 for (i = 0; i <= 64; i++) {
 i2 = i * 2;
 *port_num = port_data + i2;
 delay ();
 {
 static int i;
 i = 3;
 port_data = port_data + i;
 }
 }
} /* end of process_port */

File /users/project1/utils.c contains:
delay()
{
 int i,j;
 int waste_time;

 for (i = 0; i <= 256000; i++)
 for (j = 0; j <= 256000; j++)
 waste_time = 0;
} /* end delay */

Chapter 11: Emulator Commands
—SYMB—

488

The symbol tree as built by SRU might appear as shown in the following diagram,
depending on the object module format (OMF) and compiler used.

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay () procedure.
SRU has no way of knowing where these variables will be at run time and therefore
cannot build a corresponding symbol tree entry with run time address.

These are examples of referencing different symbols in the programs listed:

Chapter 11: Emulator Commands
—SYMB—

489

control.c:main
control.c:port_one
porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the HP
object module format does not support referencing of include files that generate
program code.

porthand.c:process_port.i
porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope with
cws. For example, if you are making many measurements involving symbols in the
file porthand.c, you could specify:

cws porthand.c:process_port

Then:

i
BLOCK_1.i

are prefixed with porthand.c: process_port before the database lookup.

If a symbol search with the current working symbol prefix is unsuccessful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. Note that this does not change
the actual current working symbol.

Chapter 11: Emulator Commands
—SYMB—

490

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2

which would not be found. The symbol utilities would then strip BLOCK_1 from
the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called port_one is also defined in control.c. This
would conflict with the identifier port_one which declares an integer pointer. SRU
can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

See Also
copy local_symbols_in
cws
display local_symbols_in
help symbols
pws

Also refer to the Symbolic Retrieval Utilities User’s Guide for additional
information on symbols and information on building a symbol data base.

Chapter 11: Emulator Commands
—SYMB—

491

trace

The options shown can be executed once for each trace command. Refer to the
COUNT, QUALIFIER, SEQUENCING, TRIGGER, and WINDOW diagrams for
details on setting up a trace.

You can perform analysis tasks either by starting a program run and then specifying
the trace parameters, or by specifying the trace parameters first and then initiating
the program run. Once a trace begins, the analyzer monitors the system busses of
the emulation processor to detect the states specified in the trace command. The
analyzer will trace any state, counting time by default.

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on

Chapter 11: Emulator Commands
trace

492

screen, the current trace automatically updates the display. If the trace memory
contents exceed the page size of the display, the NEXT PAGE, PREV PAGE, up
arrow , or down arrow keys may be used to display all the trace memory contents.
You also can press CTRL f and CTRL g to move the display left and right.

You can set up trigger and storage qualifications using the specify trace command.
When a cmb_execute command is given, which puts an EXECUTE signal on the
Coordinated Measurement Bus, analyzers will begin tracing.

again This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using trace without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

anything This causes the analyzer to capture any type of information.

arm_trig2 This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700 Series emulators, or an HP
64700 Series emulator and another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation
configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See Chapter 6, "Coordinated Measurements", for more information.

break_on_trigger This stops target system program execution when the trigger is found. The emulator
begins execution in the emulation monitor. When using this option, the on_halt
option cannot be included in the command.

COUNT This specifies whether time or state occurrences, or nothing, will be counted during
the trace. See the COUNT syntax diagram for details.

counting This option specifies whether the analyzer will count time or occurrences of states
during a trace, or whether the option is to be turned off.

modify_command This recalls the last trace command that was executed.

on_halt When using this option, the analyzer will continue to capture states until the
emulation processor halts or until a stop_trace command is executed. When this
option is used, the break_on_trigger, repetitively, and TRIGGER options cannot
be included in the command.

only This option allows you to qualify the states that are stored, as defined by
QUALIFIER .

Chapter 11: Emulator Commands
trace

493

prestore This option instructs the analyzer to save specific states that occur prior to states
that are stored (as specified with the “only” option).

QUALIFIER This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by using trace only to enter the specific events to be saved. When this is used, only
the indicated states are stored in the trace memory. See the QUALIFIER syntax.

repetitively This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until a stop_trace or a new trace command is issued. When
using this option, you cannot use the on_halt option.

SEQUENCING Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

TRIGGER This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. See the TRIGGER syntax diagram. When using this
option, you cannot include the on_halt option.

WINDOW Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. You may also use
it to further qualify complex trigger specifications. See the WINDOW syntax
pages for details.

Examples
trace after 1000H

trace only address range 1000H thru 1004H

trace counting state address 1004H

trace after address 1000H occurs 2 only address
range 1000H thru 1004H counting time
break_on_trigger

Chapter 11: Emulator Commands
trace

494

See Also
copy trace
display trace
help trace
load trace
load trace_spec
specify trace
store trace
store trace_spec

Chapter 11: Emulator Commands
trace

495

TRIGGER

This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.

A trigger is a QUALIFIER. When you include the occurs option, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).

The default is to trace after any state occurs once.

about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.

after Trace data is acquired after the trigger qualifier is found.

before Trace data is acquired prior to the trigger qualifier.

occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.

QUALIFIER This determines which of the traced states will be stored in trace memory.

<#TIMES> This prompts you to enter a number of qualifier occurrences.

Chapter 11: Emulator Commands
TRIGGER

496

Examples
trace after MAIN

trace after 1000H then data 5

Also see the trace command examples.

See Also
help trace
trace

Also refer to Chapter 6, "Coordinated Measurements".

Chapter 11: Emulator Commands
TRIGGER

497

<UNIX_COMMAND>

This structure allows you to execute UNIX commands on the emulator/analyzer
command line. The UNIX commands and command-line options are interpreted as
noops in the emulator/analyzer interface.

in_browser Places the resulting display in a scrollable box instead of an XTERM window.

wait_for_exit Use this command to ensure completion of the associated UNIX command before
starting the next command.

no_prompt_before_
exit

When the associated UNIX command completes, the results display is shown and
then removed from the display without need to press the RETURN key. Use this
option to speed execution of your command when the results display is not
important to you.

Examples To see your present working directory:

!pwd

To see a directory listing in a browser instead of terminal window:

!ls! in_browser

To make and load an executable:

!make <file>! wait_for_exit ; load <executable_file>

Chapter 11: Emulator Commands
<UNIX_COMMAND>

498

wait

This command allows you to pause the system. The wait command can be included
in a command file, or used during normal operation at the main emulation level.
Delays allow the emulation system and target processor to reach a certain condition
or state before executing the next emulation command.

The wait command does not appear on the softkey labels. You must type the wait
command into the keyboard. After you type wait, the command parameters will be
accessible through the softkeys.

If you issue a wait command without any other options, the system will pause until
it receives a <CTRL>c signal.

If set intr <CTRL>c was not executed on your system, <CTRL>c normally
defaults to the backspace key. See your UNIX system administrator for more
details regarding keyboard definitions.

A wait command in a command file will cause execution of the command file to
pause until a <CTRL>c signal is received, if <CTRL>c is defined as the interrupt
signal. Subsequent commands in the command file will not execute while the
command file is paused.

You can verify whether the interrupt signal is defined as <CTRL>c by typing set at
the system prompt.

Chapter 11: Emulator Commands
wait

499

measurement_
complete

This causes the system to pause until a pending measurement completes (for
example, when a trace data upload process completes), or until a <CTRL>c signal
is received. If a measurement is not in progress, the wait command will complete
immediately.

or This causes the system to wait for a <CTRL>c signal or for a pending
measurement to complete. The wait will end when the first one of these two
conditions occurs.

seconds This causes the system to pause for a specific number of seconds.

<TIME> This prompts you for the number of seconds to insert for the delay.

Examples
wait

wait 5; wait measurement_complete

See Also
help system_commands
help wait

Chapter 11: Emulator Commands
wait

500

WINDOW

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms and trigger terms, and will store states.
When disabled, the analyzer is effectively off, and only looks for a particular enable
term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

disable Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

enable Allows you to specify the term which will enable the analyzer to begin monitoring
states.

QUALIFIER Specifies the actual address, data, status value or range of values that cause the
analyzer to enable or disable recognition of states. Note that the enable qualifier can
be different from the disable qualifier. Refer to the QUALIFIER syntax pages for
further details on analyzer qualifier specification.

Chapter 11: Emulator Commands
WINDOW

501

Examples The following example uses an imaginary program that writes messages. The
window specification ensures that the trace memory will only store message writes
(store write transactions only during the time when the Write_Msg routine is
active), and not store other program activity.

display trace

trace enable Write_Msg start disable Write_Msg end only
status write

See Also
help trace
SEQUENCING
trace
QUALIFIER

Chapter 11: Emulator Commands
WINDOW

502

12

Emulator Error Messages

This chapter lists error and status messages that you may see when using the
emulator. The causes of the messages are given along with actions you can take to
overcome error conditions.

503

The emulator/analyzer interface provides feedback to the user through messages
that are displayed on the STATUS line.

The messages in this chapter are listed in alphabetical order.

Some messages have error numbers assigned to them. These error numbers are
shown in parenthesis at the end of the message text in this chapter.

The error log records error messages received during the emulation session. You
may want to display the error log to view the error messages. When several
messages are generated for a single error condition, you will have to view the error
log to see the complete list of messages. Only the last error message in the
sequence will remain in the status line display area.

The error log can hold up to 100 messages. To prevent overrun, the error log
purges the oldest messages to make room for the new ones.

Emulator error messages

<MMU_REGISTER> register cannot be read

Where <MMU_REGISTER> = TC, SRP, URP, ITT0 ITT1, DTT0, or DTT1.

Cause: An MMU register cannot be read, probably because the monitor is not
functioning properly.

Action: Execute a Break command to see if the monitor is functioning.

Chapter 12: Emulator Error Messages
<MMU_REGISTER> register cannot be read

504

Address translation error; non-resident page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. This error indicates that the address does
not have a valid translation.

Action: Display the address translation tables for the <address> given in the
message. You can display the MMU translations to see if the <address> is within
one of the translated ranges. You can display translation tables for the address, and
then you can view table details if one of the translation tables seems to be
misdirecting the translation of the address.

Address translation error; supervisor-only page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure. A user mode access was attempted to a
page that is only accessible in supervisor mode.

Action: Try your command again, but be sure to specify access in the supervisor
mode.

Address translation error; target bus error: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. The target system terminated a
tablewalk cycle with TEA (bus error).

Action: Verify that the SRP and URP registers point to the correct location in
memory where your address translation tables reside. If this is target memory, you
will need to determine why your target system asserts TEA.

Chapter 12: Emulator Error Messages
Address translation error; non-resident page: <address> (Error 172)

505

Address translation error; write-protected page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure.

This error indicates that write access was denied to a write-protected page. NOTE:
Except for stacking on exit, any attempts to modify memory in write-protected
pages using the monitor will succeed as long as the translation tables reside in
RAM. The monitor will temporarily clear any write-protect flags in your
translation tables in order to force the access to be completed. If the monitor is
unable to clear the write-protect flags because the translation tables are in ROM,
you will see this error.

Action: Check the content of the write-protected page to see if it has been changed
by the attempted write transaction.

Analyzer Break (Async_Stat 613)

Cause: Status message. No action necessary.

Analyzer SIMMs are not all the same size; using smallest size (Status 1002)

Cause: Plug-in SIMMs are used to expand the trace depth to 64k or 256k states in
the deep analyzer. Four SIMMs, all of the same size must be used. If they are not
all the same size, the smallest SIMM size in the set of four will be used for trace
depth.

Action: No action necessary.

Arm term used more than once (Error 1250)

Cause: This error occurs when you attempt to use the “arm” qualifier more than
once in a sequencer branch expression.

Action: Reenter the trace command and specify the “arm” qualifier only once.

Ascii symbol download failed (Error 881)

Cause: This error occurs because the system is out of memory.

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

Chapter 12: Emulator Error Messages
Address translation error; write-protected page: <address> (Error 172)

506

Attempt to load code outside of allocated bounds (Error 850)

Cause: This error occurs when you attempt to load an absolute file that contains
code or data outside the range allocated for system code.

BNC trigger break (Async_Stat 616)

Cause: This status message will be displayed if you have configured the emulator to
break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

Break caused by CMB not ready (Error 611)

Cause: This status message is printed during coordinated measurements if the CMB
READY line goes false. The emulator breaks to the monitor. When CMB READY
is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor. No action is necessary (status only).

Break condition configuration aborted (Error 653)

Cause: Occurs when <CTRL> c is entered during bc display.

Break condition must be specified (Error 652)

Cause: You tried to define a breakpoint without specifying the break condition to
enable or disable.

Action: Reenter the breakpoint command along with the enable/disable flag and the
break condition you wish to modify.

Break due to cause other than step (Error 689)

Cause: An activity other than a step command caused the emulator to break. This
could include any of the break conditions or a <CTRL> c break.

Breakpoint code already exists: <address> (Error 667)

Cause: You attempted to insert a breakpoint; however, there was already a software
breakpoint instruction at that location which was not already in the breakpoint table.

Action: Remove the breakpoints from your program code and try to insert
breakpoints again.

Chapter 12: Emulator Error Messages
Attempt to load code outside of allocated bounds (Error 850)

507

Breakpoint disable aborted (Error 671)

Cause: Occurs when <CTRL> c is entered when disabling software breakpoints.

Breakpoint enable aborted (Error 670)

Cause: Occurs when <CTRL> c is entered when setting software breakpoints.

Breakpoint not added: <address> (Error 668)

Cause: The emulator tried to insert a breakpoint in a memory location which could
not be accessed.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted (Error 669)

Cause: Occurs when <CTRL> c is entered when clearing a software breakpoint.

Cannot enable mmu/cache while background monitor is selected (Error 158)

Cause: You tried to enable either the MMU or the cache within the emulation
configuration after selecting the background monitor. The background monitor
requires the MMU and the cache to be disabled in order to operate properly.

Action: Use the foreground monitor if you want to enable either the MMU or the
cache.

Clock speed not available with current count qualifier (Error 1239)

Cause: This error occurs when you attempt to specify a fast (F) or very fast (VF)
maximum qualified clock speed when the analyzer is counting time. This error also
occurs when you attempt to specify a very fast (VF) maximum qualified clock
speed when the analyzer is counting states.

Action: Change the count qualifier; then reenter the command. See Chapter 5,
"Using the Analyzer", for more information.

Chapter 12: Emulator Error Messages
Breakpoint disable aborted (Error 671)

508

CMB execute break (Error 623)

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run. The emulator must break before
running. This is a status message; no action is required.

CMB execute; emulation trace started (Error 1305)

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified by the “specify trace”
command).

CMB execute; run started (Async_Stat 693)

Cause: This status message is displayed when you are making coordinated
measurements. The CMB/EXECUTE pulse has been received; the emulation
processor started running at the address specified by the "specify run" command.

CMB trigger break (Async_Stat 617)

Cause: This status message will be displayed if you have configured the emulator to
break on a CMB trigger and the CMB trigger line is activated during a program
run. The emulator is broken to the monitor.

Command line too complex (Error 814)

Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

Command line too complex (Error 816)

Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

Chapter 12: Emulator Error Messages
CMB execute break (Error 623)

509

Command line too complex (Error 818)

Cause: A maximum nesting level has been exceeded for nested command
execution.

Action: Reduce the number of nesting levels.

Command line too long; maximum line length: <number of characters>
(Error 813)

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

Configuration aborted (Error 642)

Cause: Occurs when a <CTRL> c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: <item>=<value> (Error 626)

Cause: Target condition or system failure while trying to change configuration
item.

Action: Try to reset. Then reenter your cf command. Check target system, and run
performance verification (pv command).

Conflict between expected and received symbol information (Error 880)

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

Chapter 12: Emulator Error Messages
Command line too complex (Error 818)

510

Conflicting disassembler option: <option> (Error 1000)

Cause: This error occurs when you attempt to specify inverse assembly options that
are not allowed with each other.

Action: Do not use conflicting inverse assembly options in the same trace list
command.

Continuing with default foreground monitor (Error 144)

Cause: You have downloaded a custom foreground monitor which was linked at an
address other than the monitor address specified within the emulation configuration.

Action: Change the monitor address within the emulation configuration or link your
custom monitor at the address specified in the configuration.

Copy memory aborted; next destination: <address> (Error 752)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Copy target image not supported (Error 175)

Cause: The cim (copy image memory) command cannot be used in this emulator.
Normally, the cim command would be used to copy a target system memory range
to emulation memory so you could set breakpoints or patch code.

Action: To do this without the cim command, save the target system memory range
to an absolute file using the copy command. Then remap the target memory range
to emulation memory, and load the absolute file into emulation memory using the
load command. Refer to Chapter 4, "Using the Emulator", for information on
saving and loading absolute files.

Chapter 12: Emulator Error Messages
Conflicting disassembler option: <option> (Error 1000)

511

Count out of bounds: <number> (Error 318)

Cause: You specified an occurrence count less than 1 or greater than 65535 for a
trace trigger or trace find sequence command.

Action: Reenter the command, specifying a count value from 1 to 65535.

Count qualifier not available with current clock speed (Error 1240)

Cause: This error occurs when you attempt to specify the “time” count qualifier
when the current maximum qualified clock speed is fast (F) or very fast (VF). This
error also occurs when you attempt to specify a “state” count qualifier when the
maximum qualified clock speed is fast (F).

Action: Change the clock speed; then change the count qualifier. See Chapter 5,
"Using the Analyzer", for more information.

Coverage not supported (Error 175)

Cause: The memory coverage command cannot be used in this emulator because
there is no supporting hardware.

DeMMUer has not been loaded (Error 163)

Cause: You tried to enable the deMMUer before it had been loaded. The
deMMUer can only be enabled after it has been loaded with a set of reverse
translation information.

Action: Load the deMMUer from the present translation tables in memory or from
a deMMUer file that you have previously saved.

Disable breakpoint failed: <address> (Error 604)

Cause: System failure or target condition.

Action: Emulator was unable to write previously saved opcode to target memory.
Check target memory system.

Chapter 12: Emulator Error Messages
Count out of bounds: <number> (Error 318)

512

Disable breakpoint failed: <address> (Error 666)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

Disabled deMMUer

Cause: This is a status message. It indicates that the deMMUer has now been
disabled. Physical memory addresses will be provided to the emulation-bus
analyzer. The analyzer will not be able to accept commands containing source-file
symbols, and it will not be able to show source-file symbols in its trace lists.

Disabled mmu/cache while background monitor is selected (Status 157)

Cause: This status message indicates that the MMU or the cache or both were
enabled in the emulation configuration when you changed the monitor type to
background. The background monitor requires the MMU and the cache to be
disabled in order to operate properly. Both the MMU and the cache were disabled
automatically when you changed to the background monitor.

Display register failed: <register> (Error 634)

Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
display.

Display truncated to <number of lines> lines (Status 162)

Cause: This status message indicates that more lines of MMU translations could
have been displayed, but when you requested a display of MMU translations, you
limited the number of lines to be displayed.

Display truncated to <NUM> lines

Cause: This is a status message. It indicates that the display could not contain all of
the information available from the emulator.

Chapter 12: Emulator Error Messages
Disable breakpoint failed: <address> (Error 666)

513

Downloaded monitor spans multiple 4K byte block boundaries (Error 145)

Cause: You tried to load a custom foreground monitor, but the absolute file has
address records that are outside the range of a single 4-Kbyte block.

Action: Modify your custom monitor so that its code and data fit into a single
4-Kbyte block; then assemble, link, and repeat the load operation.

Dual ported memory already in use (Error 142)

Cause: There is only one 4-Kbyte block of dual-port, emulation memory available
for mapping and you tried to map another term using the dual-port attribute. If you
select the foreground monitor, this block is used by the monitor and is not available
for mapping.

Action: Reenter the map command and answer "No" to the Dual Port Memory
attribute, or select a background monitor and reenter your map command.

Dual ported memory limited to 4K bytes (Error 141)

Cause: There are only 4 Kbytes of dual-port emulation memory on the emulator
probe. You tried to map an emulation memory term whose address range spanned
more than 4 Kbytes by answering "Yes" to the "Dual Port Memory" attribute
selection.

Action: You can:

• Reenter the specification, answering "Yes" to the "Dual Port Memory"
attribute question. Be sure to restrict the address range to 4 Kbytes.

• Reenter your specification, and use regular emulation memory. That is, answer
"No" to the "Dual Port Memory" attribute question.

Enabled deMMUer

Cause: This is a status message. It indicates that the deMMUer has now been
enabled to provide reverse translation information to the emulation-bus analyzer.
The analyzer will be able to accept commands containing source-file symbols, and
it will be able to show source-file symbols in its trace lists.

Chapter 12: Emulator Error Messages
Downloaded monitor spans multiple 4K byte block boundaries (Error 145)

514

Emulation memory access failed (Error 702)

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message "Unable to Break".

Emulator terminated hung bus cycle: <address> byte read (Status 170)

Cause: This status message will be displayed if the target system fails to provide
TA or TEA bus cycle termination for a particular cycle and the emulator terminates
the bus cycle in order to break from execution of the target program to execution
within the monitor, or to complete execution of a monitor command (which
accessed this memory address). This can happen on any access to target memory or
interlocked emulation memory (when you answered "Yes" to the "Emulator
Terminates Bus Cycles" attribute question).

The emulator will not terminate any hung bus cycles unless you explicitly say break
or you execute a monitor command (ie: "display memory 7000"). The emulator
will generate this status message each time it terminates a hung bus cycle. The
emulator never attempts to terminate bus cycles in program space (opcode fetches)
or for any addresses in the foreground monitor.

Enable breakpoint failed: <address> (Error 665)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

Chapter 12: Emulator Error Messages
Emulation memory access failed (Error 702)

515

Event "expr" cannot be combined with expression definition (Error 1256)

Cause: The terminal interface tgout (trigger output) command of the deep analyzer
may use an arbitrary expression as an event to drive the trig1 and/or trig2 signals to
the emulator. This expression can be set up in two ways. One way uses two tgout
commands; the first command defines the signals and type of events, and the
second command defines the expression. This is most useful when defining
complicated expressions. The other way uses one tgout command which defines
the expression as the event. This error message indicates that you have tried to
combine the two methods.

Action: Reenter your tgout command using the correct format for the command.
Refer to the tgout command description in the chapter titled "Interfaces of the Deep
Analyzer" for correct formats for the tgout command.

Failed to disable step mode (Error 684)

Cause: System failure. Run performance verification (pv command).

FATAL SYSTEM SOFTWARE ERROR (Error 204)
FATAL SYSTEM SOFTWARE ERROR (Error 205)
FATAL SYSTEM SOFTWARE ERROR (Error 208)

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands that caused the error. Cycle power
on the emulator and reenter the commands. If the error repeats, call your local HP
Sales Office for assistance.

File could not be opened

Cause: The file cannot be opened or created for writing.

Action: Check to make sure that the parent directory for the file has correct
permissions set.

Chapter 12: Emulator Error Messages
Event "expr" cannot be combined with expression definition (Error 1256)

516

File transfer aborted (Error 410)

Cause: A transfer operation was aborted due to a break received, most likely a
<CTRL> c from the keyboard. If you typed <CTRL> c, you probably did so
because you thought the transfer was about to fail.

Action: Retry the transfer, making sure to use the correct command options. If you
are unsuccessful, make sure the data communications parameters are set correctly
on the host and on the HP 64700; then retry the operation.

Guarded mem break: <guarded memory address> (Async_Stat 628)

Cause: This status message indicates that the target program accessed memory
mapped as guarded and the emulator interrupted target execution and began
running in the monitor. When the MMU is enabled, the address displayed in this
message will be physical, as denoted by the trailing "a" after the function code.

Handled target exception: <exception> (Error 628)

Cause: The vector base register points to the exception vector table in the
foreground monitor and the target program generated an exception that was caught
by the monitor.

Hardware breakpoints can only be used in target memory (Error 154)

Cause: You attempted to use the "force hardware" option to set a breakpoint at an
address mapped as emulation memory. The "force hardware" option for
breakpoints is not available for addresses in emulation memory; it is only available
for breakpoints in target memory, typically for setting breakpoints in target ROM.

Action: Delete the "force hardware" option from your command and try to set the
breakpoint again.

HP64783 M68040 firmware not compatible with emulation probe (Status 179)

Cause: The emulation control card is programmed with MC68040 firmware, but the
firmware does not identify the probe as being the MC68040.

Action: Make sure that you are using an MC68040 probe, and then make sure the
probe cables between the control card and the probe are connected correctly. Refer
to Chapter 19, "Installation and Service", for proper cable connections.

Chapter 12: Emulator Error Messages
File transfer aborted (Error 410)

517

Illegal base for count display (Error 1130)

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column. Also,
you can use “,A” to specify that counts be displayed absolute, or you can use “,R”
to specify that counts be displayed relative.

Illegal base for mnemonic disassembly display (Error 1131)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

Illegal base for sequencer display (Error 1132)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

Illegal width for symbol display: <width> (Error 1138)

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Action: Enter your command again, and specify the width of the address field for
symbol display within the range of 4 to 55.

Chapter 12: Emulator Error Messages
Illegal base for count display (Error 1130)

518

Incompatibile signal out events: <Incompatible Event Name> (Error 1254)

Cause: The terminal interface tgout (trigger output) command may be used to
drive the trig1 and/or trig2 signals to the emulator in response to several different
events. The events are trigger recognition, measurement complete, finding a
specified expression, delay after trigger recognition, and delay before measurement
complete. Some of these events may be ORed together, but a delay specification
may not be ORed with trigger recognition or mesaurement complete events.

Action: Examine your tgout specification and modify it to remove ORing of delay
specifications with trigger recognition or measurement complete events.

Insufficient emulation memory (Error 21)

Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system. For a detailed explanation that may explain why you got this message,
refer to the message titled, "Request cannot be satisfied with remaining map
resources" in this chapter.

Interrupt stack is located in guarded memory: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as guarded.

The monitor exits to user program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Chapter 12: Emulator Error Messages
Incompatibile signal out events: <Incompatible Event Name> (Error 1254)

519

Interrupt stack is located in ROM: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as ROM, and you enabled breaks on writes to ROM.

The monitor exits your target program by executing an RTE instruction.
Depending upon whether or not you set the M bit in the SR, the monitor will either
place a format $0 stack frame on the interrupt stack or will place a format $1
(throwaway) stack frame on the interrupt stack and a format $0 stack frame on the
master stack. Any access violations detected during these writes will abort the exit
from the monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Interrupt stack pointer is odd or uninitialized (Error 151)

Cause: You are in the monitor and you tried to run, but the emulator detected that
your stack pointer is invalid (it detected an odd value).

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program.

Insufficient emulation memory (Error 21)

Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system.

Chapter 12: Emulator Error Messages
Interrupt stack is located in ROM: <address> (Error 151)

520

Interrupt stack is not located in RAM: <address> (Error 151)

Cause: You issued a command to run the target program. When the emulator
attempted to write to one of your stacks, it detected that the stack address is not
located in memory which operates as RAM. When the monitor writes out a stack
frame to your stack space, the monitor reads it back to verify that it was created
correctly. Unless the emulator can verify that the stack frame is located in RAM
and was created correctly, the monitor will abort the run.

The monitor exits the target program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Invalid address: <address> (Error 310)

You specified an invalid address value as an argument to a command (other than an
analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Reenter the command and the address specification. Use online help by
typing help --EXPR-- and help --SYMB--. See the <ADDRESS> and the
<EXPRESSION> syntax pages in this manual for information on address
specifications.

Chapter 12: Emulator Error Messages
Interrupt stack is not located in RAM: <address> (Error 151)

521

Invalid address range: <address_range> (Error 311)

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Reenter the command and the address specification. Use online help by
typing help --EXPR-- and help --SYMB--. See the <ADDRESS> and
<EXPRESSION> syntax pages in this manual for information on address
specifications. Also, make sure that the upper boundary specification is greater than
the lower boundary specification (the lower boundary must always precede the
upper boundary on the command line).

Invalid answer in ascii config file; configuration aborted

Cause: A configuration file (filename.EA) being loaded into the emulator has at
least one invalid answer to a configuration question.

Action: Display the emulator error log to see which answer(s) were invalid. Edit
the configuration file and correct the invalid answer(s) or create a new
configuration file by modifying the emulator configuration and storing it.

Invalid attribute for memory type : <attribute> (Error 140)

Cause: The dual-port memory and "Emulator Terminates Bus Cycles" attributes are
valid only for emulation ROM and emulation RAM memory types. You tried to
assign one of these attributes to target memory.

Action: Refer to Chapter 3, "Using the Emulator/Analyzer Interface", for
information on the memory type attributes.

Invalid base: <base> (Error 319)

Cause: This error occurs if you have specified an invalid base when entering a
command to change the format of the trace list.

Action: Use the help screens to view the valid base options.

Chapter 12: Emulator Error Messages
Invalid address range: <address_range> (Error 311)

522

Invalid clock channel: <name> (Error 1207)

Cause: Valid clock channels are L, M, and N.

Action: Respecify the command using valid clock channels.

Invalid command group: <group name> (Error 801)

Cause: This error occurs when you specify an invalid group name in the help
<group> command.

Action: Enter the help command for a listing of the valid group names.

Invalid configuration item: <item> (Error 627)

Cause: You specified a non-existent configuration item. For example, because the
MC68040 emulator does not support an internal clock, you would see this message
if you entered a command to specify an internal clock configuration item for your
emulator.

Action: Use the help screen to see valid items. Reenter the command, specifying
only configuration items that are supported by your emulator. Refer to Chapter 8,
"Configuring the Emulator", in this manual.

Invalid count: <count> (Error 315)

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

Invalid disassembler option: <option> (Error 1001)

Cause: You specified an invalid option for the disassembler. The disassembler can
display all bus cycles, display only instruction cycles, dequeue the trace list, not
dequeue the trace list, and disassemble starting with the lower word of the
instruction.

Action: Use valid inverse assembly options in your command.

Chapter 12: Emulator Error Messages
Invalid clock channel: <name> (Error 1207)

523

Invalid entry at line <NUM> in file: <FILE> (Error 10372)

Cause: The data in the named <FILE> being loaded into the deMMUer is not in the
correct format.

Action: Edit the file <FILE> and correct the syntax error or create a new file with a
Store DeMMUer to file command.

Invalid expression: <expression> (Error 307)

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. <expression> is the bad expression.

Action: Use online help. Reenter the expression, following the syntax rules for that
type of expression. Refer to Chapter 11, "Emulator Commands", to determine the
expression type and the correct syntax for that type.

Invalid map address range: <address range> (Error 723)

Cause: You specified an invalid address range. For example, you may have
specified digits that don’t correspond to the base specified, or you forgot to precede
a hexadecimal letter digit with a number, or the upper boundary of the range you
specified is less than the lower boundary.

Action: Reenter your command and the address specification. See the
<ADDRESS> and the <EXPRESSION> syntax pages in this manual for
information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

Invalid memory map attribute: <attribute> (Error 731)

Cause: The only valid memory map attributes for the MC68040 emulator are
Transfer Cache Inhibit, Emulator Terminates Bus Cycles, and Dual Port Memory.

Action: Reenter your command, using only valid memory map attributes.

Chapter 12: Emulator Error Messages
Invalid entry at line <NUM> in file: <FILE> (Error 10372)

524

Invalid memory map type: <type> (Error 730)

Cause: You specified a memory type while mapping that is not one of the
supported types: Emul RAM, Emul ROM, Target RAM, Target ROM,
Guarded.

Action: Reenter your command, specifying only one of the five supported types,
listed above.

Invalid number of arguments (Error 308)

Cause: You either entered too many options to a command or an insufficient
number of options.

Action: Reenter the command with correct syntax. Use online help by typing help
<command>. Refer to Chapter 11, "Emulator Commands", in this manual for more
information.

Invalid occurrence count: <number> (Error 1234)

Cause: Occurrence counts may be from 1 to 65535.

Action: Reenter the command with a valid occurrence count.

Invalid option or operand (Error 300)
Invalid option or operand: <option> (Error 305)

Cause: You have specified an incorrect option to a command. <option>, if printed,
indicates the incorrect option.

Action: Use online help by typing help <command> or ? <command>. Reenter
the command with the correct syntax. Refer to Chapter 11, "Emulator Commands",
for more information.

Invalid pod number: <pod#> (Error 1253)

Cause: This error message occurs when you attempt to specify a slave clock for a
non-existent analyzer pod.

Action: Use the trace activity command to display the valid pod numbers, and use
only these numbers when entering commands.

Chapter 12: Emulator Error Messages
Invalid memory map type: <type> (Error 730)

525

Invalid qualifier resource or operator: <expression> (Error 1241)

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: See Chapter 5, "Using the Analyzer", for more information.

Invalid question in ascii file; configuration aborted

Cause: A configuration file (filename.EA) being loaded into the emulator has at
least one question that is not valid for this emulator.

Action: Display the emulator error log to see which question(s) were invalid. Edit
the configuration file and remove the invalid question(s) or create a new
configuration file by modifying the emulator configuration and storing it.

Invalid syntax for global or user symbol name: <symbol> (Error 875)

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for example, :global_symbol). When specifying a symbol
you created, make sure that you enter the name correctly without a colon.

Invalid syntax for local symbol or module: <symbol/module> (Error 876)

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name, make sure you specify the module
name, followed by a colon, and then the symbol name (for example
module:local_symbol). Make sure you specify the module name correctly.

Invalid time: <time> (Error 842)

Cause: You have incorrectly specified the time format in the command.

Action: Reenter the command with the correct time format. See the command
syntax pages in this manual for the correct format.

Chapter 12: Emulator Error Messages
Invalid qualifier resource or operator: <expression> (Error 1241)

526

Label not defined: <label> (Error 321)

Cause: You entered an analyzer expression in which the label was not present in the
analyzer label list. For example, if the label list includes address, data, and status,
you might have entered something such as lowerdata=24t. This error also occurs if
you try to delete a label that does not exist.

Action: You can reenter the command, using one of the previously defined labels,
and adjust the expression as necessary to accommodate the fit of that label to the
analyzer input lines. You can also define a new label using the tlb command, and
then reenter the analyzer command using the newly defined label.

Loaded deMMUer file: <FILE>

Cause: This is a status message. It indicates that the deMMUer was successfully
loaded from a configuration file.

Loaded deMMUer from MMU translation tables

Cause: This is a status message. It indicates that the deMMUer was successfully
loaded from the MMU translation tables in memory.

Map range overlaps with term: <term number> (Error 734)

Cause: You entered a map term whose address range overlaps with one already
mapped.

Action: Reenter the map term so that ranges do not overlap, or combine terms and
change the memory type.

Chapter 12: Emulator Error Messages
Label not defined: <label> (Error 321)

527

Master stack is located in guarded memory: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as guarded.

The monitor exits to user program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Master stack is located in ROM: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as ROM, and you enabled breaks on writes to ROM.

The monitor exits your target program by executing an RTE instruction.
Depending upon whether or not you set the M bit in the SR, the monitor will either
place a format $0 stack frame on the interrupt stack or will place a format $1
(throwaway) stack frame on the interrupt stack and a format $0 stack frame on the
master stack. Any access violations detected during these writes will abort the exit
from the monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Chapter 12: Emulator Error Messages
Master stack is located in guarded memory: <address> (Error 151)

528

Master stack is not located in RAM: <address> (Error 151)

Cause: You issued a command to run the target program. When the emulator
attempted to write to one of your stacks, it detected that the stack address is not
located in memory which operates as RAM. When the monitor writes out a stack
frame to your stack space, the monitor reads it back to verify that it was created
correctly. Unless the emulator can verify that the stack frame is located in RAM
and was created correctly, the monitor will abort the run.

The monitor exits the target program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack, the master stack, or both.

Master stack pointer is odd or uninitialized (Error 151)

Cause: You are in the monitor and you tried to run, but the emulator detected that
your stack pointer is invalid (it detected an odd value).

Action: Use the display registers and modify registers commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program.

Macro buffer full; macro not added (Error 809)

Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

Chapter 12: Emulator Error Messages
Master stack is not located in RAM: <address> (Error 151)

529

Maximum argument buffer space exceeded (Error 826)

Cause: You exceeded the space limits for argument lists.

Action: Reenter the command with less arguments, or simplify the expressions in
the arguments.

Maximum number of arguments exceeded (Error 824)

Cause: You exceeded the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

Memory modify aborted; next address: <address> (Error 754)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Memory search aborted; next address: <address> (Error 756)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Missing option or operand (Error 313)

Cause: You have omitted a required option to the command.

Action: Reenter the command with the correct syntax. Use online help by typing
help <command>. Refer to Chapter 11, "Emulator Commands", in this manual for
further information on required syntax.

Chapter 12: Emulator Error Messages
Maximum argument buffer space exceeded (Error 826)

530

MMU is not enabled via configuration (Error 160)

Cause: You tried to display MMU translations or load the deMMUer but the MMU
is disabled within the emulation configuration.

Action: If you wish to use the MMU, enable it in the emulation configuration
before attempting to display its translations or load the deMMUer.

MMU is not enabled via translation control register (Error 160)

Cause: You tried to display the MMU translations or load the deMMUer. While
the MMU is enabled within the emulation configuration, the enable bit is not set in
the translation control register.

Action: Either enable the MMU in your target system by modifying the TC register,
or specify an enabled value for the TC register on the command line when invoking
the MMU or deMMUer commands.

Monitor address is not set to <addr> for downloaded monitor (Error 144)

Cause: You have downloaded a custom foreground monitor which was linked at an
address other than the monitor address specified within the emulation configuration.

Action: Change the monitor address within the emulation configuration or link your
custom monitor at the address specified in the configuration.

Monitor operation interrupted by target system (Error 173)

Cause: Your attempt to execute a monitor command was aborted when the target
system preempted the monitor and did not return control. When the foreground
monitor is running and is in its idle state, the monitor can be interrupted by the
target system to service target system requirements. If the target system interrupts
the monitor and fails to return control to the monitor after it has finished, this error
is generated. The emulator does not attempt to regain control when after the
monitor has been preempted.

Action: The only way to regain control of your emulation system is to reset the
emulation processor. If you do not want the monitor to be preemptable by target
system interrupts, you can increase the monitor interrupt priority level. Refer to
Chapter 8, "Configuring the Emulator."

Chapter 12: Emulator Error Messages
MMU is not enabled via configuration (Error 160)

531

No map terms available; maximum number already defined (Error 7212)

Cause: You tried to add more mapper terms than are available for this emulator. For
example, with the MC68040 emulator, there are only eight terms. If you had
already defined memory types for these terms, then tried to map another term, you
would see the above error message.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed.

No MMU translations display exists

Cause: There has been no Display MMU Translations command prior to
attempting to Copy MMU Translations to a file.

Action: Perform a Display MMU Translations command first. Then try your
Copy MMU Translations command again.

No module specified for local symbol (Error 882)

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by a
colon, and then the local symbol name.

No monitor configured (Error 174)

Cause: You configured monitor "none" and you tried to break into the monitor or
execute a command that requires use of the monitor.

Action: Either change the configuration to use a monitor, or do not try to issue a
command that requires the monitor.

No translation for alternate function code address spaces (Error 161)

Cause: You tried to display an MMU translation for an address specified with
alternate function codes 0, 3, 4, or 7.

Action: Don’t use alternate function codes 0, 3, 4, or 7 when attempting to display
an MMU translation for an address. The MMU does not translate addresses in
alternate function code space.

Chapter 12: Emulator Error Messages
No map terms available; maximum number already defined (Error 7212)

532

Number must be a multiple of 1000H

Cause: A number other than a multiple of 1000H was entered for the base address
of the foreground monitor during configuration.

Action: Use a number that is a multiple of 1000H for the base address of the
foreground monitor.

One sequence term required (Error 1228)

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

Out of hardware breakpoints (Error 154)

Cause: You either tried to set a breakpoint in target ROM or use the force hardware
option to set a breakpoint in target RAM, and all eight hardware breakpoint
resources are already in use.

Action: Review your present set of breakpoints to see if you can delete one or more
of the hardware breakpoints that are presently set. No more than eight hardware
breakpoints can be set at any one time (one per aligned long word). Only one
hardware resource is used if two hardware breakpoints are set in the same long
word.

Out of system memory (Error 201)

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros and equates. This will free additional
memory.

Chapter 12: Emulator Error Messages
Number must be a multiple of 1000H

533

Program counter is odd or uninitialized (Error 150)

Cause: You tried to run the processor from the current PC, but the value of the
current PC is odd.

Action: Modify the PC to an even value. The processor expects even word
alignment of opcodes.

Program counter is located in guarded memory (Error 150)

Cause: You tried to run but the emulator detected that the program counter is
located in guarded memory. This error will only be generated if the MMU is
disabled; otherwise, you will see an asynchronous error indicating access to
guarded memory occurred when the emulator attempted to run the target program.

Action: Make sure the program counter is set to an address in RAM or ROM before
you attempt to run your program.

Range resource in use (Error 1221)

Cause: This error occurs when you attempt to redefine the “complex” configuration
range resource while it is currently being used as a qualifier in the trace
specification.

Action: In the “complex” configuration, display the sequencer specification to see
where the range resource is being used and remove it; then, you can redefine the
range resource.

Range term used more than once (Error 1248)

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: Do not try to use the range resource more than once in a sequencer branch
expression.

Chapter 12: Emulator Error Messages
Program counter is odd or uninitialized (Error 150)

534

Read PC failed during break (Error 603)

Cause: The monitor is not responding.

Action: Check your target system configuration, the emulator configuration and
memory map, or reinitialize the emulator. Then try the command sequence again.

Record checksum failure (Error 400)

Cause: During a transfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry the transfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

Records expected: <number>; records received: <number> (Error 401)

Cause: The HP 64700 received a different number of records than it expected to
receive during a transfer operation.

Action: Retry the transfer. If the failure is repeated, make sure the data
communications parameters are set correctly on the host and on the HP 64700. See
the HP 64700-Series Card Cage Installation/Service Guide for details.

Register access aborted (Error 630)

Cause: Occurs when a <CTRL> c is entered during register display.

Register class cannot be modified: <register class> (Error 637)

Cause: You tried to modify a register class instead of an individual register. You
can only modify individual registers.

Action: See the display and modify syntax pages in Chapter 11, "Emulator
Commands", in this manual for a list of register names.

Chapter 12: Emulator Error Messages
Read PC failed during break (Error 603)

535

Request access to guarded memory: <address> (Error 707)

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Reenter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. You can also remap memory so that the desired
addresses are no longer mapped as guarded.

Request cannot be satisfied with remaining map resources (Error 147)

Cause: Although you have not exceeded the maximum number of map terms that
can be specified in the memory map, you have run into a hardware resource
limitation in the emulator that arises when target memory is mapped including the
transfer cache inhibit attribute.

There are eight hardware resources on the emulation probe for mapping emulation
memory and driving the TCI signal for target memory ranges. When two
emulation memory modules are installed, the emulator requires seven of these
resources to map all of the emulation memory. Target memory ranges require
either zero or one resource, depending on whether or not use of the transfer cache
inhibit attribute matches its use in the "Default Memory Type" term. For example,
if "Default Memory Type" is mapped to target RAM and the Transfer Cache Inhibit
attribute is OFF, one hardware resource is required to add a map term for target
memory that requires Transfer Cache Inhibit to be ON. Consuming additional
hardware resources for mapping target memory will reduce the amount of
emulation memory available for mapping. Once all eight hardware resources have
been consumed, mappable emulation memory will be reduced to zero and you will
get this message.

Action: Try to minimize the number of hardware resources used for mapping target
memory by mapping the "Default Memory Type" term to target memory both with
the Transfer Cache Inhibit attribute ON and OFF. Find out which specification for
Default Memory Type uses the least number of hardware resources.

Chapter 12: Emulator Error Messages
Request access to guarded memory: <address> (Error 707)

536

Request failed; bus grant (Error 171)

Cause: An attempt was made to execute a monitor command, but an external target
system device has monopolized the bus and the monitor is no longer responding.

Action: Wait until the processor has regained bus control, and then retry the
operation or don’t let external devices monopolize the bus for extended periods of
time.

Request failed; halted (Error 171)

Cause: During a monitor command, one or more target exceptions caused the
processor to stop running bus cycles.

Action: Use the emulation-bus analyzer to determine what exceptions caused the
problem and try to work around them.

Request failed; no bus cycles (Error 171)

Cause: During a monitor command, some problem caused the processor to stop
running bus cycles.

Action: Use the emulation-bus analyzer to determine what caused the problem and
try to work around them. If you are using the demo board, make sure the reset
flying lead from the probe is connected to the demo board.

Request failed; no target power (Error 171)

Cause: You do not have proper power applied to your target system or demo board.

Action: Check the connection from your emulation probe to the target system or
demo board. If using the demo board, be sure you have connected the external
power cable correctly.

Request failed; slow clock (Error 171)

Cause: The target system is providing target power but no clock signal.

Action: Make sure the clock oscillator is installed correctly.

Chapter 12: Emulator Error Messages
Request failed; bus grant (Error 171)

537

Request failed; target reset (Error 171)

Cause: During a monitor command, the target system asserted (and continues to
assert) the reset signal; the monitor is no longer responding.

Action: Prevent your target system from asserting the reset signal when you are
using monitor commands.

Request failed; unexpected exception: <vector number> (Error 171)

Cause: The monitor was executing a command and some exception occurred that it
did not expect. During monitor command execution, the monitor traps all
exceptions by using its own stack and vector table. The monitor provides exception
handlers for some exceptions, such as access fault, so that it can either recover or
issue a detailed error message. The monitor had no exception handler for the
exception number shown in this message.

Action: Reset the emulator and try your command again.

Restricted to real time runs (Error 40)

Cause: While the emulator is restricted to real-time execution, you have attempted
to enter a command that requires a temporary break to the monitor for processing
(such as a request to display target system memory locations). The emulator will
not allow temporary breaks while the emulator is in the reset state or while the
target program is running.

Action: Break to the monitor using the break command, and then execute the
desired command or disable the real time mode.

Retry limit exceeded, transfer failed (Error 412)

Cause: The limit for repeated attempts to send a record during a transfer operation
was exceeded; therefore, the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the host,
line noise may cause the failure.

Chapter 12: Emulator Error Messages
Request failed; target reset (Error 171)

538

Run failed during CMB execute (Async_Error 694)

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

Sequence term not contiguous: <term> (Error 1225)

Cause: This error occurs when you attempt to insert a sequence term that is not
between existing terms or after the last term.

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

Sequence term not defined: <term> (Error 1227)

Cause: This error occurs when you attempt to delete or specify a primary branch
expression for a sequence term number that is possible, but is not currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.

Sequence term number out of range: <term> (Error 1224)

Cause: This error occurs when a sequencer qualification command specifies a
non-existent sequence term. The easy configuration sequencer may have a
maximum of four sequence terms. Eight sequence terms exist in the complex
configuration sequencer.

Action: Reenter the command using an existing sequence term.

Severe error detected, file transfer failed (Error 411)

Cause: An unrecoverable error occurred during a transfer operation.

Action: Retry the transfer. If it fails again, make sure the data communications
parameters are set correctly on the host and on the HP 64700. Also make sure you
are using the correct command options, both on the HP 64700 and on the host.

Chapter 12: Emulator Error Messages
Run failed during CMB execute (Async_Error 694)

539

Software breakpoint: <breakpoint address> (Async_Stat 615)

Cause: This status message indicates that the target program executed a software
breakpoint instruction (an execution breakpoint, either in software or provided by
one of the eight hardware breakpoint resources). The emulator stopped the target
program and began running in the monitor.

Software breakpoint break condition is disabled (Error 661)

Cause: You disabled the software breakpoint feature. Breakpoints are enabled by
default. Then you attempted to set a breakpoint, or you attempted to single step
with the foreground monitor (either the built-in or custom foreground monitor).

Action: Re-enable the software breakpoint feature and try again.

Specified breakpoint not in list: <address> (Error 663)

You tried to enable a software breakpoint that was not previously defined.
<address> prints the address of the breakpoint you attempted to enable. Insert the
breakpoint into the table and memory.

Stack pointer is odd (Error 80)

Cause: You tried to modify the stack pointer to an odd value and the emulator
expects the stack to be aligned on a word boundary.

Action: Modify the stack pointer to an even value.

Step display failed (Error 688)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Stepping aborted (Error 685)

Cause: This message is displayed if a break was received during a step command
with a stepcount of zero (0). The break could have been due to any of the break
conditions or a <CTRL> c break.

Chapter 12: Emulator Error Messages
Software breakpoint: <breakpoint address> (Async_Stat 615)

540

Stepping aborted; number steps completed: <steps completed> (Error 686)

Cause: This message is displayed if a break was received during a step command
with a stepcount greater than zero. The break could have been due to any of the
break conditions or a <CTRL> c break. The number of steps completed is displayed.

Stepping failed (Error 680)

Cause: Stepping has failed for some reason. For example, this message will appear
if the emulator can’t modify the trace vector, which is used to implement the step
function. Usually, this error message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more about why stepping failed.

Stored deMMUer file: <FILE>

Cause: This is a status message. It indicates that a deMMUer configuration file was
successfully stored.

Symbol cannot contain text after the wildcard (Error 879)

Cause: You tried to include text after the wildcard specified in the symbol name
(for example, symbol*text).

Action: Enter the symbol again, but do not include text after the wildcard (*).

Symbol cannot contain wildcard in this context (Error 878)

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.

Chapter 12: Emulator Error Messages
Stepping aborted; number steps completed: <steps completed> (Error 686)

541

Symbol not found: <symbol> (Error 877)

Cause: This occurs when you try to enter a symbol name that doesn’t exist.

Action: Enter a valid symbol name.

Target bus error: <address> (Error 172)

Cause: The monitor attempted to access target system memory or memory that you
specified must be terminated by the target system, and the target system terminated
the bus cycle with TEA.

Action: Retry your command. If the error occurs again and if it is during an
attempted access to emulation memory, you can answer "Yes" to the configuration
question "Emulator Terminates Bus Cycles" for the emulation memory. If the error
occurs again on access to target system memory, inspect your target system to
understand why it is sending the TEA for the specified address.

Target failed to terminate bus cycle: <address> long read (Error 170)

Cause: You attempted to break or reset into the monitor and the target system failed
to terminate a bus cycle with TA or TEA. Normally, the emulator will force bus
cycle termination for the target system in order to break into the monitor.
However, the emulator refused to terminate the bus cycle because the address was
in program space or it was within the address range of the foreground monitor.

Action: Reset the emulator and target system. If the address is within emulation
memory, answer "Yes" to the question "Emulator Terminates Bus Cycles" if the
target system does not provide cycle terminations within this address range.

Chapter 12: Emulator Error Messages
Symbol not found: <symbol> (Error 877)

542

Target memory access failed (Error 700)

Cause: The emulator was unable to perform the requested operation on memory
mapped to the target system. This message is displayed in conjunction with other
error messages that further clarify the problem that occurred. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation.

Action: See other error messages in the error log to further understand the cause of
the error.

Trig1, trig2 delay spec out of bounds: <Entered Numeric Value> (Error 1255)

Cause: The terminal interface tgout (trigger output) command of the deep analyzer
provides a delay feature that allows for driving of the trig1 and/or trig2 signals a
specified number of states after trigger or before trace complete. The delay value
must be in the range 0 through "current analyzer depth - 1". The current analyzer
depth is controlled by the terminal interface command tcf. Note: Use of this delay
feature may cause modification of the current trigger position value.

Action: Correct the delay value in your specification so that it is within the range
of 0 through "current analyzer depth -1".

Trigger position changed to accomodate trig1, trig2 delay spec (Status 1203)

Cause: The terminal interface tgout (trigger output) command provides a delay
feature that allows for driving of the trig1 and/or trig2 signals a specified number of
states after trigger or before trace complete. The setup of this delay feature
interacts with the trigger position specification. The trigger position specification
may be automatically modified by the deep analyzer in order to make the delay
feature work in the expected manner.

Action: You can use the terminal interface command tp (trigger position) to
examine the new trigger position value.

Trigger term cannot be term 1 (Error 1251)

Cause: This error occurs when you attempt to specify the first sequence term as the
trigger term. The trigger term may be any term except the first.

Action: Respecify the trigger term as any other sequence term.

Chapter 12: Emulator Error Messages
Target memory access failed (Error 700)

543

Too many sequence terms (Error 1226)

Cause: This error occurs when you attempt to insert more than four sequence terms.

Action: Do not attempt to insert more than four sequence terms.

Trace error during CMB execute (Error 692)

Cause: System failure.

Action: Run performance verification (pv command).

Trace format command failed; using old format (Error 1133)

Cause: This error occurs when the trace format command fails for some reason.

Action: This error message always occurs with another error message. Refer to the
description for the other error message displayed.

Trigger position out of bounds: <bounds> (Error 1202)

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range you typed (not the correct limits
on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023
(or -512 to 511 if counting is enabled).

trig1 break (Async_Stat 618)

Cause: This status message will be displayed if you used the break_on_trigger
syntax of the trace command and the analyzer has found the trigger condition while
tracing a program run. The emulator is broken to the monitor.

Chapter 12: Emulator Error Messages
Too many sequence terms (Error 1226)

544

Trig1 signal cannot be driven and received (Error 1302)

Cause: This error occurs when you attempt to specify the internal trig1 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig1 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig1 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

trig2 break (Async_Stat 619)

This status message will be displayed if you have used the internal trig2 line to
connect the analyzer trigger output to the emulator break input and the analyzer has
found the trigger condition. The emulator is broken to the monitor.

Trig2 signal cannot be driven and received (Error 1303)

Cause: This error occurs when you attempt to specify the internal trig2 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig2 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig2 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

Unable to access deMMUer while analysis trace is in process (Error 163)

Cause: You tried to issue a command that requires access to the deMMUer while
the analyzer was running a trace. You cannot load, enable or disable the deMMUer
while an analysis trace is in process.

Action: Wait for the trace to complete or stop the trace before changing the state of
the deMMUer.

Chapter 12: Emulator Error Messages
Trig1 signal cannot be driven and received (Error 1302)

545

Unable to modify trace vector to <value> for single stepping (Error 156)

Cause: You tried to single step, and the emulator detected the trace vector was not
set properly and the emulator was unable to modify the vector table because it was
not located in emulation memory or target RAM. This usually occurs when the
vector table is located in target ROM.

Action: Copy or relocate the vector table in emulation memory or target RAM, or
change your ROM image so that it contains the proper value for the trace vector for
single stepping. Refer to stepping information in Chapter 4, "Using the Emulator".

Unable to break (Error 608)

Cause: This message is normally used with other messages that further describe the
error. It is displayed if the emulator is unable to break to the monitor because the
emulation processor is reset, halted, or the monitor is not responding for some
reason.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use the
break command to break to the monitor. If reset by the target system, release that
reset. If halted, try reset and break to get to the monitor. If there is a bus grant,
wait for the requesting device to release the bus before retrying the command. If
there is no clock input, perhaps your target system is faulty. It’s also possible that
you have configured the emulator to restrict to real time runs, which will prohibit
temporary breaks to the monitor.

Unable to delete label; used by emulation analyzer: <label> (Error 1105)

Cause: This error occurs when you attempt to delete an emulation trace label that is
currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification in the configuration,
display the emulation trace patterns in the complex configuration, or display the
trace format to see where the label is used. Also, you should check tcq and tpq for
uses of that label. You must change the pattern or format specification to remove
the label before you can delete it.

Chapter 12: Emulator Error Messages
Unable to modify trace vector to <value> for single stepping (Error 156)

546

Unable to load new memory map; old map reloaded (Error 725)

Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

Unable to modify register: <register>=<value> (Error 632)

Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
modification.

Unable to read registers in class: <name> (Error 631)

Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed. Most
likely, the emulator was unable to break to the monitor to perform the register read.

Unable to redefine label; used by emulation analyzer: <label> (Error 1108)

Cause: This error occurs when you attempt to redefine an emulation trace label that
is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the emulation trace format to see where the label is used. You must change
the pattern or format specification to remove the label before you can redefine it.

Unable to reload old memory map; hardware state unknown (Error 726)

Cause: Error occurred while trying to modify the emulation memory map.

Action: Usually there are other error messages present. Refer to their descriptions
to more fully understand the cause and action to take for this error.

Chapter 12: Emulator Error Messages
Unable to load new memory map; old map reloaded (Error 725)

547

Unable to reset (Error 640)

Cause: Target condition or system failure.

Action: Check target system, and run performance verification (pv command).

Unable to run (Error 610)

Cause: Run has failed for some reason. For example, this message will appear if
the emulator cannot write to stack, which is required to run. Usually, this error
message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more information about why the run failed. Look at the emulator prompt to know
the emulator status. Take a trace with the analyzer to see where the emulator is
executing.

Unable to run after CMB break (Error 606)

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

Unable to run HP64783 performance verification tests (Error 178)

Cause: You entered the pv command, but the emulator was unable to start
performance verification because the firmware did not identify the probe as being
the MC68040.

Action: Make sure the correct emulator probe is connected and that all cables are
secured. Make sure that the demo board is connected to the emulator probe, the
power cable is connected between the HP 64700 card cage and the demo board, and
the reset flying lead is connected between the emulation probe and the demo board.

Chapter 12: Emulator Error Messages
Unable to reset (Error 640)

548

Unable to run HP64783 tests without target power (Error 178)

Cause: The demo board does not have proper power connected to it.

Action: Check the connections of the external power cable and the reset flying lead
to the demo board.

Unexpected software breakpoint (Error 620)
Unexpected step break (Error 621)

Cause: System failure.

Action: Run performance verification (pv command).

Undefined software breakpoint: <address> (Error 605)

Cause: The emulator has encountered a BKPT instruction in your program that was
not inserted with the breakpoint command.

Action: Remove the breakpoints inserted in your code before assembly and link,
and then reinsert them using the breakpoint command. If this message was
received after you enabled the MMU, read "Execution Breakpoint Problems" in
Chapter 10, "Using Memory Management".

Undefined software breakpoint: <breakpoint address> (Async_Stat 605)

Cause: This status message indicates a breakpoint instruction was executed and the
emulator stopped target execution and started running in the monitor. The emulator
had no record of a breakpoint being set at this address. This can happen if the
MMU relocates a page containing a breakpoint before that breakpoint is executed.
In this case, the emulator will have no record of the breakpoint at the relocated
address.

Chapter 12: Emulator Error Messages
Unable to run HP64783 tests without target power (Error 178)

549

Unmatched quote encountered (Error 820)

Cause: In entering a string, such as with the echo command, you didn’t properly
match the string delimiters (either ‘‘ or “”). For example, you might have entered

echo “set S1 to off

Action: Reenter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
example: echo “set S1 to off”.

Update HP64740 firmware to version A.02.02 or newer (Error 177)

Cause: This error occurred when you attemped to disassemble a trace and the
analyzer firmware was found to be out of date.

Action: Refer to Chapter 20, "Installing/Updating Emulator Firmware". You must
update the firmware to the version number specified in the message, or newer
firmware version number. Your analyzer is not able to disassemble its trace
memory with its present firmware.

Update HP64700 system firmware to A.04.00 or newer (Error 176)

Cause: This error occurred because your system firmware is out of date.

Action: Refer to Chapter 20, "Installing/Updating Emulator Firmware". You must
update the firmware to the version number specified in the message, or newer
firmware version number. Your system is not usable with its present firmware.

Vector table modified for single stepping (Status 155)

Cause: This status message indicates that you issued the emulator command to
single step. The emulator detected that the trace vector was not properly set for
stepping so the emulator temporarily modified one or more exception vectors in
your vector table. The original values are restored by the emulator after the step
completes. This message is only issued one time if you do not change the address
or value of the trace vector.

Chapter 12: Emulator Error Messages
Unmatched quote encountered (Error 820)

550

Write to ROM break:<ROM address> (Async_Stat 628)

Cause: This status message indicates the target program accessed memory mapped
as either emulation ROM or target ROM; the emulator interrupted target execution
and began running in the monitor. This only occurs if you enabled breaks on writes
to ROM. When the MMU is enabled, the address displayed in this message will be
physical, as denoted by the trailing "a" after the function code.

Chapter 12: Emulator Error Messages
Write to ROM break:<ROM address> (Async_Stat 628)

551

552

13

Setting X Resources

553

Setting X Resources

The Graphical User Interface is an X Window System application which means it is
a client in the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is an
interface between application programs you run on your system and the system
input and output devices.

An X resource controls an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server’s RESOURCE_MANAGER property. (The xrdb command loads
user-defined resource specifications into the RESOURCE_MANAGER
property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

Chapter 13: Setting X Resources

554

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $HOME/.Xdefaults-host file
is read (typically contains resource specifications for a specific remote host).

5 Resource specifications included in the command line with the -xrm option.

6 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

8 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Scheme files group resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

• Modify the Graphical User Interface resources.

• Use customized scheme files.

• Set up custom action keys.

• Set initial recall buffer values.

• Set up demos or tutorials.

Refer to Chapter 17, "X Resources and the Graphical Interface", for more detailed
information.

Chapter 13: Setting X Resources

555

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX
SunOS
(custom)

Names the subdirectory for platform
specific schemes. This resource should be
set to the platform on which the X server is
running (and displaying the Graphical User
Interface) if it is different from the platform
where the application is running.

HP64_Softkey.colorScheme BW
Color
(custom)

Names the color scheme file.

HP64_Softkey.sizeScheme Small
Large
(custom)

Names the size scheme file which defines
the fonts and the spacing used.

HP64_Softkey.labelScheme Label
$LANG
(custom)

Names to use for labels and pushbutton text.
The default uses the $LANG environment
variable if it is set and if a scheme file
named Softkey.$LANG exists in one of the
directories searched for scheme files;
otherwise, the default is Label.

HP64_Softkey.inputScheme Input
(custom)

Specifies mouse and keyboard operation.

Chapter 13: Setting X Resources
To modify the Graphical User Interface resources

556

Commonly Modified Application Resources

Resource Values Description

HP64_Softkey.lines 24
(min. 18)

Specifies the number of lines in the main
display area.

HP64_Softkey.columns 100
(min. 80)

Specifies the number of columns, in
characters, in the main display area.

HP64_Softkey.enableCmdline True
False

Specifies whether the command line area is
displayed when you initially enter the
Graphical User Interface.

*editFile (example) vi
%s

Specifies the command used to edit files.

*editFileLine (example) vi
+%d %s

Specifies the command used to edit a file at
a certain line number.

*<proc>*actionKeysSub.keyDefs (paired list
of strings)

Specifies the text that should appear on the
action key pushbuttons and the commands
that should be executed in the command line
area when the action key is pushed. Refer
to the "To set up custom action keys"
section for more information.

*<proc>*dirSelectSub.entries (list of
strings)

Specifies the initial values that are placed in
the File→Context→Directory popup recall
buffer. Refer to the "To set initial recall
buffer values" section for more information.

*<proc>*recallSub.entries (list of
strings)

Specifies the initial values that are placed in
the entry buffer (labeled "():"). Refer to the
"To set initial recall buffer values" section
for more information.

Chapter 13: Setting X Resources
To modify the Graphical User Interface resources

557

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is recreated each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:

vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

!HP64_Softkey.lines: 24
!HP64_Softkey.columns: 85

Chapter 13: Setting X Resources
To modify the Graphical User Interface resources

558

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
!HP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you’re not sure, you can check by entering the xrdb -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your $HOME/.Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults

4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting the
Graphical User Interface is described in Chapter 3, "Using the Emulator/Analyzer
Interface".

Chapter 13: Setting X Resources
To modify the Graphical User Interface resources

559

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

1 Create the $HOME/.HP64_schemes/<platform> directory.

For example:

mkdir $HOME/.HP64_schemes
mkdir $HOME/.HP64_schemes/HP-UX

2 Copy the scheme file to be modified to the $HOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

3 Modify the $HOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
from the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

Chapter 13: Setting X Resources
To use customized scheme files

560

4 If the name of your custom scheme file is different from the name of the default
scheme file, you must modify the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files have different
names than the default scheme files, you must modify these resource settings so
that your customized scheme files are used instead of the default scheme files.

For example, to use the "$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":
HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources" section for
more detailed information on modifying resources.

Chapter 13: Setting X Resources
To use customized scheme files

561

To set up custom action keys

• Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action ("") means to repeat the previous operation, whether it
came from a pulldown, a dialog, a popup, or another action key.

Examples To set up custom action keys when the graphical interface is used with the 68040
emulator, modify the "*m68040*actionKeysSub.keyDefs" resource:

*m68040*actionKeysSub.keyDefs: \
 "Make" "cd /users/project2/68040; !make! in_browser" \
 "Load Pgm" "load configuration config.EA; load program2" \
 "Run Pgm" "run from reset" \
 "Trace after ()" "trace after (); display trace" \
 "Step Source" "set source on; display memory mnemonic; step source" \
 "Again" ""

Refer to "To modify Graphical User Interface resources" earlier in this chapter for
more detailed information on modifying resources.

Chapter 13: Setting X Resources
To set up custom action keys

562

To set initial recall buffer values

• Modify the "entries" resource for the particular recall buffer.

There are six popup recall buffers present in the Graphical User Interface. The
resources for these popup recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Popup Recall Buffer Resources

Recall Popup Resources Description

File→Context→Directory ... *dirSelect.textColumns
*dirSelect.listVisibleItemCount
*dirSelectSub.entries

The default number of text
columns in the popup is 50.

The default number of visible
lines in the popup is 12.

The "entries" resource is
defined as a list of strings (see
the following example).

Up to 40 unique values are
saved in each of the recall
buffers (as specified by the
resource settings
"*XcRecall.maxDepth: 40" and
"*XcRecall.onlyUnique: True").

File→Context→Symbols ... *symSelect.textColumns
*symSelect.listVisibleItemCount
*symSelectSub.entries

Trace→Trace Spec ... *modtrace.textColumns
*modtrace.listVisibleItemCount
*modtraceSub.entries

Entry Buffer (): *recall.textColumns
*recall.listVisibleItemCount
*recallSub.entries

Command Line command
recall

*recallCmd.textColumns
*recallCmd.listVisibleItemCount
*recallCmdSub.entries

Command Line pod/simio
recall

*recallKbd.textColumns
*recallKbd.listVisibleItemCount
*recallKbdSub.entries

Chapter 13: Setting X Resources
To set initial recall buffer values

563

Examples To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with 68040 emulators, modify the
"*m68040*dirSelectSub.entries" resource:
*m68040*dirSelectSub.entries: \
 "$HOME" \
 ".." \
 "/users/project1" \
 "/users/project2/68020"

Refer to "To modify the Graphical User Interface resources" earlier in this chapter
for more detailed information on modifying resources.

Chapter 13: Setting X Resources
To set initial recall buffer values

564

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description

*enableDemo False
True

Specifies whether Help→Demo
appears in the pulldown menu.

*demoPopupSub.indexFile ./Xdemo/Index-topics Specifies the file containing the list
of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the demo topic list popup.

*demoPopup.listVisibleItemCount 10 Specifies the length, in lines, of the
demo topic list popup.

*demoTopic About demos Specifies the default topic in the
demo popup selection buffer.

Chapter 13: Setting X Resources
To set up demos or tutorials

565

Tutorial Related Component Resources

Resource Value Description

*enableTutorial False
True

Specifies whether
Help→Tutorial appears in the
pulldown menu.

*tutorialPopupSub.indexFile ./Xtutorial/Index-topics Specifies the file containing the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the tutorial topic
list popup.

*tutorialPopup.listVisibleItemCount 10 Specifies the length, in lines, of
the tutorial topic list popup.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial popup selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the
Graphical User Interface.

1 Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I" to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)"
pushbutton (in the topic popup dialog) is pushed. A command file must have the
same name as the topic file with ".cmd" appended. Also, a command file must be
in the same directory as the associated topic file.

Chapter 13: Setting X Resources
To set up demos or tutorials

566

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index popup and second the name of the file that is raised
when the topic is selected. For example:
"About demos" /users/guest/gui_demos/general
"Loading programs" /users/guest/gui_demos/loadprog
"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topic1), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64783A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:
*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64783A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:
*demoTopic: "About demos"

Refer to "To Modify Graphical User Interface resources" earlier in this chapter for
more detailed information on modifying resources.

Chapter 13: Setting X Resources
To set up demos or tutorials

567

568

14

The SPARCsystem Graphical User
Interface and Softkey Interface

Using the emulator/analyzer interface on the SPARCsystem

569

The SPARCsystem Emulator/Analyzer Interface

This chapter contains the following important information about use of the
emulator on the SPARCsystem:

• Cross referencing HP product numbers used on HP-UX and SunOS versions of
the 68040 emulator.

• A description of how the emulator/analyzer uses the keys on your
SPARCsystem keyboard.

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface

570

HP-UX/SunOS product number cross reference

The HP-UX and SunOS versions of the 68040 Emulator Interface operate the same
way. Product numbers and other terminology is different. The following table will
help you translate between HP-UX and SunOS product numbers:

Workstation Software 1

HP 64783A/B
HP B3090B
HP B1463B
HP B1465B
HP B1467B
HP B1477B
HP B1487A
HP B1418A

HP emulator for Motorola 68040 microprocessor
Graphical User Interface and Softkey Interface for use with HP 64783A/B
C cross compiler
cross assembler/linker
debugger/simulator
debugger/emulator
Software Performance Analyzer
HP Branch Validator

1Support for HP 9000 and SunOS can be obtained by ordering the following options to the above product
numbers:

Option AAV
Option AAX
Option AAY

SunOS version, media and documentation
HP 9000, 300/400 versions, media and documentation
HP 9000, 700 version, media and documentation

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface
HP-UX/SunOS product number cross reference

571

Using your SPARCsystem keyboard

The following table describes the use of the keys on your SPARCstation keyboard.
The “roll” functions are for an hp64term window in OpenWindows only.

To get function Press this key

delete char Del

insert char Ins (For SunView and xterm windows only.
Does not work in OpenWindows windows.)

next page PgDn

prev page PgUp

roll up Shift ↑ (for xterm only)

roll down Shift ↓ (for xterm only)

roll left Shift ← (for xterm only)

roll right Shift → (for xterm only)

up arrow ↑

down arrow ↓

left arrow ←

right arrow →

home Home

anti-home End

carriage return Enter

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface
Using your SPARCsystem keyboard

572

To get function Press this key

tab Tab

backtab Undo

cleartoeol Control E

roll left Control F

roll right Control G

clearline Control U

FW_recall Control B

BK_recall Control R

eof Control D

refresh Control L

other Control X

sigint Control C

sigquit Control | end release

kill !!! Control Z (Do not use!
 Disabled in xterm window created by
hp64term.)

softkey 1 F1

softkey 2 F2

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface
Using your SPARCsystem keyboard

573

To get function Press this key

softkey 3 F3

softkey 4 F4

softkey 5 F5

softkey 6 F6

softkey 7 F7

softkey 8 F8

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface
Using your SPARCsystem keyboard

574

Keyboard template

Cut out the template on this page and place
it on your keyboard for quick reference.

Place the Sk1 label over the F1 key.

If you exported KEYMAP=sun.2-9 or
KEYMAP=xterm.2-9, then place the Sk1
label over the F2 key.

The roll keys only work in xterm windows.

^R means to hold down the
control key while pressing R.

Chapter 14: The SPARCsystem Graphical User Interface and Softkey Interface
Keyboard template

575

576

15

Microtec Language Tools Used With
MC68040 Emulators

Using the emulator/analyzer with Microtec language tools

577

Microtec Language Tools used with the
Emulator/Analyzer

This chapter contains the following important information about use of Microtec
language tools with the 68040 emulator/analyzer:

• A comparison of the names of Microtec and HP executables.

• Microtec commands.

• Assembler defaults.

• Linker defaults.

• Librarian defaults.

Chapter 15: Microtec Language Tools Used With MC68040 Emulators

578

Using Microtec Language Tools

You can use the Microtec Research, Inc. language tools with emul700 and db68k.
The language tools available from Microtec are the mcc68k C compiler and the
asm68k assembler.

The following table compares the names of the Microtec and HP executables:

Executables for the MC68040:

Program
Microtec
name

HP AxLS name HP product
number

assembler
linker
librarian
compiler

asm68k
lnk68k
lib68k
mcc68k

as68040
ld68040
ar68040
cc68040

B3641
B3641
B3641
B3640

The emulator and Softkey Interface are designed to work with the HP Advanced
Cross Language System. Microtec’s language tools are quite similar to the HP
language tools. The input syntax and code generated by the HP and Microtec
assemblers, linkers, and librarians are identical with few exceptions.

Microtec uses a license manager to enable execution of their products. Be sure to
read about this in the Microtec manuals.

Chapter 15: Microtec Language Tools Used With MC68040 Emulators
Using Microtec Language Tools

579

To use the Microtec commands

• To assemble a file to generate an HP-OMF (.X) absolute file, use the following
commands:

asm68k -h -o filename.o -f d,case filename.s
lnk68k -H filename.L -o filename.X -c filename.k filename.o

• To compile a C program to generate an HP-OMF object file, use the following
commands:

mcc68k -hgc -Wa,-f"d" -o filename.o filename.c
lnk68k -m -fd -H filename.L -c filename.k filename.o > filename.MAP

• To assemble a file to generate an HP-MRI IEEE-695 (.x) absolute file, use the
following commands:

asm68k -o filename.o -f d,case filename.s
lnk68k -fi -o filename.x -c filename.k filename.o

• To compile a C program to generate an HP-MRI IEEE-695 (.x) absolute file, use
the following commands:

mcc68k -Wl,-m,-fd -g -I/usr/hp64000/include/68xxx -efilename.k -o
filename.X \
 filename.c

Chapter 15: Microtec Language Tools Used With MC68040 Emulators
Using Microtec Language Tools

580

Assembler defaults

You should be aware of these differences between asm68k and as68k:

Command-line syntax

The differences are minor. See the on-line man pages for a description of the
command-line options.

Case sensitivity

as68k is case sensitive by default, asm68k is not. Use the command line flag
“-fcase” to make asm68k case sensitive.

Symbols in HP-MRI IEEE-695 files

The HP assembler places local symbols in the output object file by default, asm68k
does not. Use the command line flag “-fd’ with asm68k to generate local symbols.

The HP assembler places global symbols put in the debug part by default. There is
no way to do this with Microtec’s asm68k. This information is needed by
emul700/SRU to correctly scope symbols. Thus you will find that some symbols
may be incorrectly scoped when using the emulator with the Microtec assembler.

Linker defaults

You should be aware of these differences between lnk68k and ld68k:

Output file format

ld68k produces HP-MRI IEEE-695 by default. lnk68k produces Motorola
S-Records by default. To generate an HP-MRI IEEE-695 (.x) format absolute file,
use the -H command line option or -fi flag.

Chapter 15: Microtec Language Tools Used With MC68040 Emulators
Using Microtec Language Tools

581

Local symbols

ld68k provides local symbols in absolute file by default, but lnk68k does not. The
command line flag -fi and option -H also set the d flag, which will cause lnk68k to
generate local symbols.

Support files

ld68k and lnk68k have different default locations and environment variables used
to locate linker command files and libraries.

Librarian defaults

ar68k uses .a as the default library suffix. lib68k uses .lib as the default library
suffix.

The Microtec MCC68K compiler

mcc68k is very different from cc68k. Study the Microtec documentation if you
need specific information about mcc68k.

To get db68k to work with mcc68k output, you need to add the following to your
.profile:

HP64_DEBUG_PATH=<path to source files>
export HP64_DEBUG_PATH

If this is not done, the debugger cannot find the high-level “C” source files.

Chapter 15: Microtec Language Tools Used With MC68040 Emulators
Using Microtec Language Tools

582

16

Specifications and Characteristics

583

Processor Compatibility

The HP 64783A/B is compatible with the Motorola MC68040, MC68EC040, and
MC68LC040 processors, and with any processors that meet all specifications of the
MC68040, MC68EC040, and MC68LC040 processors.

Electrical

Maximum clock speed

The maximum external clock speed of the HP 64783A is 33 MHz, and of the
HP 64783B is 40 MHz. The emulator runs without wait states at clock speeds up to
25 MHz. Above 25 MHz, one wait state is required in all bus cycles and between
burst transfers.

Motorola JTAG

HP 64783A/B does not support Motorola JTAG. Therefore, no specifications are
given for Motorola JTAG in this manual.

Chapter 16: Specifications and Characteristics
Processor Compatibility

584

HP 64783A/B Maximum Ratings

Characteristic Symbol Value Unit

Supply Voltage VCC –0.3 to +5.5 V

Input Voltage Vin –0.5 to +5.5 V

Maximum Operating Ambient Temperature TA 45 oC

Minimum Operating Ambient Temperature TA 0 oC

Storage Temperature Range Tstg –40 to +70 oC

Chapter 16: Specifications and Characteristics
HP 64783A/B Maximum Ratings

585

HP 64783A/B Electrical Specifications

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS
(VCC=5.0 Vdc ±5%)

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 VCC V

Input Low Voltage VIL GND 0.8 V

Undershoot — 0.5 V

Input Leakage Current @ 0.5/2.4 V
AVEC, BCLK, BG, CDIS, MDIS, IPLx, PCLK, RSTI, SCx,
TBI, TLNx, TCI, TCK, TEA

IIL
IIH

–250
—

—
25

µA

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V
An, CIOUT, Dn, LOCK, LOCKE, SIZx, TDO, TMx, TLNx, TTx, UPAx
BB, R/W, TIP, TS
 TA

ITSI

–50
–100
–200

50
100
200

µA

Output High Voltage
IOH = –32 mA:
 An, Dn, SIZx, TTx, UPAx, LOCK, LOCKE, TLNx, CIOUT, TMx,
 PSTx, RSTO, BR, MI, BG,reset flying lead
IOH = –3.2 mA:
 R/W, TS, TIP, BB, TA, IPEND

VOH

2.0

2.4

—

—

V

Output Low Voltage
IOL = 64 mA
 An, Dn, SIZx, TTx, UPAx, LOCK, LOCKE, TLNx, CIOUT, TMx,
 PSTx, RSTO, BR, MI, BG, reset flying lead
IOL = 24 mA
 R/W, TS, TIP, BB, TA, IPEND

VOL

—

—

0.55

0.5

V

Capacitance
Vin=0 V, f=1 MHz

Cin — 25 pF

Chapter 16: Specifications and Characteristics
HP 64783A/B Electrical Specifications

586

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS
(VCC=5.0 Vdc ±5%)

Characteristic Symbol Min Max Unit

Supply Current
f = 25 MHz
f = 33 MHz

ICC
—
—

1.4
1.8

A
A

Notes for HP 64783A/B Electrical Specifications:

BCLK and PCLK have additional input current and capacitance loading because of
RC terminations. Refer to their equivalent circuit diagrams for details. The
numbers given in the HP 64783A/B Electrical Specifications table do not include
the RC terminations.

Chapter 16: Specifications and Characteristics
HP 64783A/B Electrical Specifications

587

HP 64783A/B Clock AC Timing Specifications

Num Characteristic

25 MHz 33 MHz 40 MHz

UnitMin Max Min Max Min Max

Frequency of Operation 16.67 25 16.67 33 20 40 MHz

1 PCLK Cycle Time 20 30 15 30 12.5 25 ns

2 PCLK Rise Time 1.7 1.7 — 1.5 ns

3 PCLK Fall Time 1.6 1.6 — 1.5 ns

4 PCLK Duty Cycle Measured at 1.5 V 47.50 52.50 46.67 53.33 46.0 54.00 %

4a1 PCLK Pulse Width High Meas. at 1.5 V 9.50 10.50 7 8 5.75 6.75 ns

4b1 PCLK Pulse Width Low Measured at 1.5
V

9.50 10.50 7 8 5.75 6.75 ns

5 BCLK Cycle Time 40 60 30 60 25 50 ns

6,7 BCLK Rise and Fall Time — 4 — 3 — 3 ns

8 BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 %

8a1 BCLK Pulse Width High Measured at
1.5 V

16 24 12 18 10 15 ns

8b1 BCLK Pulse Width Low Measured at 1.5
V

16 24 12 18 10 15 ns

9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 ppm

10 PCLK to BCLK Skew — n/a — n/a — n/a ns

Notes for Clock AC Timing Specifications:

1 Specification value at maximum frequency of operation.

Chapter 16: Specifications and Characteristics
HP 64783A/B Clock AC Timing Specifications

588

HP 64783A/B Output AC Timing Specifications

Num Characteristic

25 MHz1 33 MHz1 40 MHz1

UnitMin Max Min Max Min Max

11 BCLK to Address CIOUT, LOCK, LOCKE,
R/W, SIZx, TLNx, TMx, TTx, UPAx Valid

9 25 6.5 22.5 5.25 21 ns

12 BCLK to Output Invalid (Output Hold) 9 — 6.5 — 5.25 — ns

13 BCLK to TS Valid 9 25 6.5 22.5 5.25 21 ns

14 BCLK to TIP Valid 9 25 6.5 22.5 5.25 22 ns

18 BCLK to Data Out Valid 9 27 6.5 24.5 5.25 23 ns

19 BCLK to Data Out Invalid (Output Hold) 9 — 6.5 — 5.25 — ns

20 BCLK to Output Low Impedance 3 — 3 — 3 — ns

21 BCLK to Data-Out High Impedance 9 32 6.5 27 5.25 24.5 ns

262 BCLK to Multiplexed Address Valid n/a n/a n/a n/a n/a n/a ns

272 BCLK to Multiplexed Address Driven n/a — n/a — n/a — ns

282 BCLK to Multiplexed Address High
Impedance

n/a n/a n/a n/a n/a n/a ns

292 BCLK to Multiplexed Data Driven n/a — n/a — n/a — ns

302 BCLK to Multiplexed Data Valid n/a n/a n/a n/a n/a n/a ns

38 BCLK to Address, CIOUT, LOCK,
LOCKE, R/W, SIZx, TS, TLNx, TMx, TTx,
UPAx High Impedance

9 31 6.5 26 5.25 23.5 ns

39 BCLK to BB, TA, TIP High Impedance 19 31 14 26 11.5 23.5 ns

Chapter 16: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

589

Num Characteristic

25 MHz1 33 MHz1 40 MHz1

UnitMin Max Min Max Min Max

40 BCLK to BR, BB Valid 9 25 6.5 22.5 5.25 21 ns

43 BCLK to MI Valid 9 25 6.5 22.5 5.25 21 ns

48 BCLK to TA Valid 9 25 6.5 22.5 5.25 21 ns

50 BCLK to IPEND, PSTx, RSTO Valid 9 25 6.5 22.5 5.25 21 ns

Notes:

1 Output timing is given for output drivers specified in the DC specs (Refer to
the table of HP 64783A/B Electrical Specifications). Large/small buffer mode
select has no effect.

2 Address multiplex mode is not supported.

Chapter 16: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

590

HP 64783A/B Input AC Timing Specifications

Num Characteristic

25 MHz 33 MHz 40 MHz

UnitMin Max Min Max Min Max

15 Data-In Valid to BCLK (Setup) 9 — 9 — 8 — ns

16 BCLK to Data-In Invalid (Hold) 4 — 4 — 3 — ns

17 BCLK to Data-In High Impedance
(Read Followed by Write)

— 49 — 36.5 — 30.25 ns

22a TA Valid to BCLK (Setup) 15 — 15 — 13 — ns

22b TEA Valid to BCLK (Setup) 15 — 15 — 14 — ns

22c TCI Valid to BCLK (Setup) 15 — 15 — 14 — ns

22d TBI Valid to BCLK (Setup) 15 — 15 — 14 — ns

23 BCLK to TA, TEA, TCI, TBI Invalid
(Hold)

2 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 10 — 10 — 10 — ns

25 BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns

311 DLE Width High n/a — n/a — n/a — ns

321 Data-In Valid to DLE (Setup) n/a — n/a — n/a — ns

331 DLE to Data-In Invalid (Hold) n/a — n/a — n/a — ns

341 BCLK to DLE Hold n/a — n/a — n/a — ns

351 DLE High to BCLK n/a — n/a — n/a — ns

Chapter 16: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

591

Num Characteristic

25 MHz 33 MHz 40 MHz

UnitMin Max Min Max Min Max

361 Data-In Valid to BCLK
(DLE Mode Setup)

n/a — n/a — n/a — ns

371 BCLK to Data-In Invalid
(DLE Mode Hold)

n/a — n/a — n/a — ns

41a BB Valid to BCLK (Setup) 12 — 12 — 12 — ns

41b BG Valid to BCLK (Setup) 12 — 12 — 12 — ns

41c CDIS, MDIS Valid to BCLK (Setup) 13 — 13 — 13 — ns

41d IPLx Valid to BCLK (Setup) 8 — 8 — 8 — ns

42 BCLK to BB, BG, CDIS, IPLx, MDIS
Invalid (Hold)

2 — 2 — 2 — ns

44a Address Valid to BCLK (Setup) 12 — 12 — 12 — ns

44b SIZx Valid to BCLK (Setup) 13 — 13 — 13 — ns

44c TTx Valid to BCLK (Setup) 13 — 13 — 13 — ns

44d R/W Valid to BCLK (Setup) 10 — 10 — 10 — ns

44e SCx Valid to BCLK (Setup) 16 — 16 — 13 — ns

45 BCLK to Address, SIZx, TTx, R/W, SCx
Invalid (Hold)

2 — 2 — 2 — ns

46 TS Valid to BCLK (Setup) 14 — 14 — 12 — ns

47 BCLK to TS Invalid (Hold) 2 — 2 — 2 — ns

49 BCLK to BB High Impedance
(MC68040 Assumes Bus Mastership)

— 9 — 9 — 9 ns

Chapter 16: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

592

Num Characteristic

25 MHz 33 MHz 40 MHz

UnitMin Max Min Max Min Max

51 RSTI Valid to BCLK 9 — 9 — 9 — ns

52 BCLK to RSTI Invalid 2 — 2 — 2 — ns

532 Mode Select Setup to RSTI Negated n/a — n/a — n/a — ns

542 RSTI Negated to Mode Selects Invalid n/a — n/a — n/a — ns

Notes:

1 Data Latch mode is not supported.
2 Mode selects are not used.

Chapter 16: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

593

Physical

Emulator Dimensions

173 mm height x 325 mm width x 389 mm depth (6.8 in. x 12.8 in. x 15.3 in.)

Emulator Weight

HP 64783A/B, 8.2 kg (18 lb). Any component used in suspending the emulator
must be rated for 30 kg (65 lb) capacity.

Probe alone: 0.3 kg (10 oz).

Cable Length

Emulation Control Card to Probe, approximately 914 mm (36 inches).

Probe dimensions

Chapter 16: Specifications and Characteristics
Physical

594

Environmental

Temperature

Operating, 0° to +40° C (+32° to +104° F); nonoperating, -40° C to +60° C (-40° F
to +140° F).

Altitude

Operating/nonoperating 4600 m (15 000 ft).

Relative Humidity

15% to 95%.

BNC, labeled TRIGGER IN/OUT

Output Drive

Logic high level with 50-ohm load >= 2.0 V. Logic low level with 50-ohm load <=
0.4 V.

Input

74HCT132 with 135 ohms to ground in parallel. Maximum input: 5 V above Vcc; 5
V below ground.

Chapter 16: Specifications and Characteristics
Environmental

595

Communications

Host Port

25-pin female type “D” subminiature connector.

RS-232-C DCE or DTE to 38.4 kbaud.

RS-422 DCE only to 460.8 kbaud.

CMB Port

9-pin female type “D” subminiature connector.

Chapter 16: Specifications and Characteristics
Communications

596

Part 4

Concept Guide

597

Concepts Guide

In This Part

Part 4 of this book provides conceptual information on the X resources and the
Graphical User Interface.

Part 4

598

17

X Resources and the Graphical User
Interface

599

X Resources and the Graphical User Interface

This chapter contains more detailed information about X resources and scheme files
that control the appearance and operation of the Graphical User Interface. This
chapter:

• Describes the X Window concepts surrounding resource specification.

• Describes the Graphical User Interface’s implementation of scheme files.

Chapter 17: X Resources and the Graphical User Interface
X Resources and the Graphical User Interface

600

X Resource Specifications

An X resource specification is a resource name and a value. The resource name
identifies the element whose appearance or behavior is to be defined, and the value
specifies how the element should look or behave. For example, consider the
following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value is
"red".

Resource Names Follow Widget Hierarchy

A widget is an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets. Applications are built
using a hierarchy of widgets, and the application’s X resource names follow this
hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the application.
One of the top-level widget’s children is a form widget, one of the form widget’s
children is a row-column manager widget, and one of the row-column manager
widget’s children is a pushbutton widget. Resource names show a path in the
widget hierarchy.

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

Chapter 17: X Resources and the Graphical User Interface
X Resource Specifications

601

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class names.
For example, a "Done" pushbutton may have an instance name of "done" and a
class name of "XmPushButton". To set the background color for a hypothetical
"Done" pushbutton, you can use:

Application.form.row.done.background: red

Or, you can use:

Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application may
have an instance name of "applic1" and a class name of "Application". To set the
background color for a hypothetical "Done" pushbutton only in the "applic1"
application, you can use:

applic1.form.row.done.background: red

Note that instance names are more specific than class names. That is, class names
may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface can be
displayed by choosing Help→X Resource Names and clicking on the "All names"
pushbutton.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all pushbuttons, you
can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those without
wildcards.

Chapter 17: X Resources and the Graphical User Interface
X Resource Specifications

602

Specific Names Override General Names

A more specific resource specification will override a more general one when both
apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource values that
apply in particular situations:

1 Apply to ALL HP64_Softkey applications:

HP64_Softkey*<resource>: <value>

2 Apply to specific types of HP64_Softkey applications:

emul*<resource>: <value> (for the emulator)
perf*<resource>: <value> (for the performance analyzer)

3 Apply to all HP64_Softkey applications, but only when they are connected to a
particular type of microprocessor:

m68040<resource>: <value>

4 Apply to a specific HP64_Softkey application connected to a specific
processor:

perf.m68040*<resource>: <value> (for the 68040 perf. analyzer)
emul.m68040*<resource>: <value> (for the 68040 emulator)

If all four examples above are used for a particular resource, #3 will override #2 for
all applications connected to a 68040 emulator, and #4 will override #2, but only
for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be more
specific than, those found in the application defaults file.

Chapter 17: X Resources and the Graphical User Interface
X Resource Specifications

603

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications from a
set of configuration files located in system directories and user-specific locations.

Application Default Resource Specifications

Default resource specifications for an application are placed in a system directory:

HP-UX /usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is HP64_Softkey
(same as the application class name). This file is well-commented and contains
information about each of the X resources you can modify. You can easily view
this file by choosing Help→Topic and selecting the "X Resources: App Default
File" topic. Do not modify the application defaults file; any changes to this file will
affect the appearance and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server’s
RESOURCE_MANAGER property or in the user’s $HOME/.Xdefaults file.

Chapter 17: X Resources and the Graphical User Interface
How X Resource Specifications are Loaded

604

Load Order

Resource specifications are loaded from the following places in the following order:

1 The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server’s RESOURCE_MANAGER property. (The xrdb command loads
user-defined resource specifications into the RESOURCE_MANAGER
property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $HOME/.Xdefaults-host file
is read (typically contains resource specifications for a specific remote host).

5 Resource specifications included in the command line with the -xrm option.

When specifications with identical resource names appear in different places, the
latter specification overrides the former.

Chapter 17: X Resources and the Graphical User Interface
How X Resource Specifications are Loaded

605

Scheme Files

Several of the Graphical User Interface’s X resources identify scheme files that
contain additional X resource specifications. Scheme files group resource
specifications for different displays, computing environments, and languages.

Resources for Graphical User Interface Schemes

There are five X resources that identify scheme files:

HP64_Softkey.labelScheme:

Names the scheme file to use for labels and pushbutton text. Values can be:
Label, $LANG, or a custom scheme file name. The default uses the $LANG
environment variable if it is set and if a scheme file named Softkey.$LANG
exists in one of the directories searched for scheme files; otherwise, the default
is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input scheme
files. This resource should be set to the platform on which the X server is
running (and displaying the Graphical User Interface) if it is different from the
platform where the application is running. Values can be: HP-UX, SunOS,
pc-xview, or a custom platform scheme directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be Color, BW, or a custom scheme
file name.

HP64_Softkey.sizeScheme:

Names the size scheme file which defines the fonts and the spacing used.
Values can be Large, Small, or a custom scheme file name.

HP64_Softkey.inputScheme:

Names the input scheme file which specifies mouse and keyboard operation.
Values can be Input, or a custom scheme file name.

The actual scheme file names take the form, "Softkey.<value>".

Chapter 17: X Resources and the Graphical User Interface
Scheme Files

606

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their names
and brief descriptions of the resources they contain follow.

Softkey.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the $LANG environment variable is set, the scheme file
"Softkey.$LANG" is loaded if it exists; otherwise, the file
"Softkey.Label" is loaded.

Softkey.BW Defines the color scheme for black and white displays. This
file is chosen if the display cannot produce at least 16
colors.

Softkey.Color Defines the color scheme for color displays. This file is
chosen if the display can produce 16 or more colors.

Softkey.Large Defines the size scheme (that is, the window dimensions
and fonts) for high resolution displays (1000 pixels or more
vertically).

Softkey.Small Defines the size scheme (that is, the window dimensions
and fonts) for low resolution displays (less than 1000 pixels
vertically).

Softkey.Input Defines the input scheme (that is, the pushbutton and key
bindings for the mouse and keyboard).

Load Order for Scheme Files

Scheme files are searched for in the following directories and in the following order:

1 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

2 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

3 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Chapter 17: X Resources and the Graphical User Interface
Scheme Files

607

Custom Scheme Files

You can modify scheme files by copying them to the directory for user-defined
schemes and changing the resource specifications in the file. For example, if you
wish to modify the color scheme, and your platform is HP-UX, you can copy the
/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and modify its resource
specifications.

You can create custom scheme files by modifying the X resource for the particular
scheme and by placing the custom scheme file in the directory for user-defined
schemes. For example, if the following resource specifications are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor

The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Chapter 17: X Resources and the Graphical User Interface
Scheme Files

608

Part 5

Installation and Service Guide

609

Installation and Service Guide

In This Part

Part 5 of this book shows you how to:

• Connect the emulator into an MC68040 target system and overcome the
differences between the specifications and characteristics of the target
microprocessor and those of the emulator.

• Install the emulator hardware into the card cage. It also shows how to install
the demo board power cable, SRAM modules, rivets and covers, and the
emulator probe cable. Then it shows you how to connect the probe to the demo
board, and verify performance of the hardware

• Use the progflash program to ensure software compatibility.

Part 5

610

18

Connecting the Emulator to a Target
System

Things you need to know to successfully connect the emulator to a target system
and overcome problems you may encounter.

611

Plugging The Emulator Into A Target System

The following paragraphs help you understand the emulator. Equivalent circuits
are shown, followed by a list of devices that you may need to use to overcome
mechanical and electrical constraints in your target system.

Understanding an emulator

An emulator is a tool intended for debugging software, and the interactions
between software and hardware. Although emulators can help in debugging certain
hardware problems, catastrophic problems often require use of other tools, such as
a timing analyzers with preprocessors, or oscilloscopes. To effectively use an
emulator, you need to understand its capabilities and limitations, and how it
interacts with your target system. This chapter discusses limitations and
interactions of an emulator, as they relate to your target system.

An emulator is designed to be electrically and functionally equivalent to the
processor it emulates, as much as possible. Most MC68040 signals are electrically
isolated from their counterparts on the target system connection. This is done for
both electrical and functional reasons. Equivalent circuits of each processor signal
are shown later in this chapter. The impacts of these circuits are calculated and
presented in the emulator specifications listed in Chapter 16, "Specifications and
Characteristics".

In the ideal case, you would use the emulator specifications listed in this manual
when designing your target system, instead of using the processor specifications.
In the typical case, your target system has already been designed and prototyped. A
target system that is designed around MC68040 worst-case specifications will
typically work with the emulator. If certain circuits in your target system do not
allow for variations in the MC68040 specifications, compare the relevant emulator
specifications to evaluate their impact on your target system. By keeping the
differences between emulator specifications and processor specifications in mind
while you design your target system, you can save hours of debugging time when
you plug the emulator into your target system.

The MC68040 emulator does not switch between large and small buffer modes like
the MC68040 processor does. The emulator internally uses the large buffer mode
to get optimum timing performance. Since these large drivers can cause problems

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

612

for systems designed to work with small buffer mode, the emulator buffers all
signals from the processor to the target connector. Most of the signals are buffered
in ABT logic family parts. These parts are chosen to provide high speed and high
current capability while keeping slew rates to an acceptable level for small buffer
mode systems. Some control signals are buffered in PALs which have significantly
less drive capability than the processor in large mode.

Examine the DC specifications of the emulator to evaluate their differences from
processor specifications. Again, you can refer to the equivalent circuit diagrams in
this chapter for exact details. Because the emulator does not behave exactly like
the processor, you may need to examine signal quality and take appropriate steps to
compensate for differences.

The BCLK clock is the most important signal to the emulator because all system
timing is derived from this signal. The BCLK clock signal must have clean edges;
the duty cycle of this clock is not particularly important. The emulator regenerates
an internal BCLK from this signal with a 50% duty cycle. All timing is referenced
from the rising edge of BCLK. The PCLK clock is also internally regenerated;
therefore, the emulator is not sensitive to this signal.

Both the BCLK and PCLK signals are terminated on the emulator. The
terminations are placed on these signals, even though the emulator causes only a
short electrical stub, so that accessories such as the flexible cable can be used to
connect the emulator probe to your target system. The terminations on these
signals can interact with terminations on your target system. Refer to the
equivalent circuits in this chapter and adjust terminations in your target system for
best results.

The emulator uses power from the target system to operate the emulation processor
and some pullup resistors. Target power is sensed to make sure the emulator does
not drive the target system until it is powered up. In addition, the power detection
circuit delays release of processor reset for 50 ms after power is in specification to
allow the clock circuits to synchronize. Because of the protections designed into
the emulator, always power on the emulator before the target system and power off
the emulator after the target system.

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

613

Equivalent circuits

The equivalent circuits shown on this page and the next help you understand
connection requirements between the emulator probe and your target system.

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

614

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

615

Obtaining the terminal interface

The troubleshooting procedures in this chapter depend heavily on interpretation of
command-line prompts that are only seen at the low level terminal interface of this
emulator. Therefore, the commands you are told to enter are shown in the
terminal-interface form, and the displays you are told to look for are shown in this
chapter as they appear in the terminal interface.

To perform the procedures in this chapter, exit out of your emulator/analyzer and
invoke it through its terminal interface. Type the following command:

$telnet <hostname>

Where <hostname> is the name of the emulator. You could use the Internet
Protocol (IP) address (or internet address) in place of the emulator name, if desired.
For example:

$telnet 15.35.226.210

You should see messages similar to:
Trying...
Connected to 15.35.226.210
Escape character is ’^]’

After you connect to the emulator, you should see a prompt similar to:

R>

This command-line prompt indicates the emulator is in the reset state.

Make sure you begin the emulation session with the emulator in its default state.
Initialize the emulator by entering the init command:

R>init
$ Limited initialization completed

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

616

Connecting the emulator to the target system

Plugging the emulator into a target system can be difficult because of mechanical
constraints. If the mechanical constraints cannot be removed so that the emulator
can be plugged directly into the target socket, there are several accessories available
to help with the connection. These accessories are:

• Stacking pin protectors.

• PGA rotators, available from Emulation Technology.

• PGA to PGA Flexible Adapter (see below), HP Part Number E3429A.

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

617

Unfortunately, these accessories have an electrical impact on your target system.
The specifications given for the emulator do not include the impact of these
accessories. In addition to delays, the accessories can cause problems with signal
quality. Only use these accessories as a last resort.

An optional Reset Flying Lead is provided with the emulator. It can be used to
reset the target system when the rst command is used. The signal is driven low
when the emulator is in it’s reset state ("R>" prompt on screen). In addition, the
signal will pulse low when a r rst or rst -m command is issued, if the emulator is
not already in the reset state. The signal carried by the Reset Flying Lead is
intended to be used to initialize circuitry in your target system that would normally
be reset along with the processor (see below).

The example circuit shows the emulator reset signal being ANDed with a target
system reset signal to generate a new target system reset signal. This new signal
will reset the processor and other circuits on the target system when either the
emulator asserts reset, or the target system generates reset.

Chapter 18: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

618

Verifying Operation Of The Emulator In Your
Target System

When connecting an emulator into a new target system, the step-by-step approach
described in the remainder of this chapter will help you get your system running
most quickly. This is a logical procedure that starts out with the most simple
requirements and moves toward compete functionality, allowing for verification of
installation at each step of the way. This not only helps debug problems if they
arise, but builds confidence that the emulator is functioning correctly in your target
system.

To begin, run the performance verification procedure described in Chapter 19,
"Installation and Service".

Some additional equipment may be required to make measurements of MC68040
signals. It will help to have an oscilloscope and high speed timing analyzer to use
during these procedures. A 250-MHz timing analyzer may be fast enough, but
faster is better. The oscilloscope should have a single-shot bandwidth greater than
500 MHz. You may also need to cross trigger these instruments from the emulator.
If there are no trigger inputs to the timing analyzer, you can probably use a timing
channel. The BNC trigger output of the 64700 emulation card cage provides a
rising edge TTL signal.

When making measurements, remember that signals need to be probed at the right
place for the measurement being made. The emulator specifications are referenced
to the target socket connector on the probe. This is where measurements should be
made to verify compliance with the specifications. When probing setup and hold
times to circuits in the target system, make the appropriate measurements at the
circuits. This will keep connection accessories from impacting the true
measurements. Always use ground leads to get the most accurate measurements
possible.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

619

Running the emulator configured like the
processor

This step uses no emulation monitor, or emulation memory, and does not attempt to
control any of the processor signals. For this test, the only emulation feature that is
operating is the emulation-bus analyzer. The emulation-bus analyzer is passive,
like a preprocessor. The main purpose of this step is to determine whether the
loading and timing changes of the emulator impact your target system.

If your target system can run a program without the emulator, do this procedure.
Otherwise, go to step 2.

1 Turn on power to the emulator.

2 Check the emulator prompt by pressing the carriage return key.

The prompt should be "p>". A prompt of "->" indicates a software
compatibility problem. Correct problems indicated in error messages (seen in
the emulator error log) or check the software version using the ver command
for more information.

3 Configure the emulator by entering the following commands:

cf mon=none
cf cache=en
cf mmu=en
cf ti=en
cf wait=<en,dis>, as appropriate for your target system

4 Set up the emulation-bus analyzer to capture all MC68040 system cycles.

tck -u
tg any
tsto any
tp c
t

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

620

5 Execute your program with the command: r rst .

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

6 Power on the target system.

7 Verify correct operation.

The target system should run just as if the processor was being used. If your target
system performs any I/O, check it to see of your system performs it correctly. If
your target system appears to work correctly, allow it to reach its stable operating
temperature and test it again.

If the target system appears to work correctly, go to the paragraph titled, "Installing
the Background Monitor", later in this chapter. Otherwise, verify operation of the
target system as described next.

To verify operation of the target system

Get the prompt by pressing the carriage return key, or use the command es to get
more information about the emulator status. If the system is working the prompt
will normally be "U>", but there are a few situations where the system will be
working properly and the prompt will be something different. If the bus is taken
away from the MC68040 often or for long periods of time, the emulator can display
the "g>" prompt or alternate between "g>" and "U>". If the MC68040 is running
code in its internal cache for long periods of time, the emulator may display the
"b>" prompt. The emulator may alternate between any of these prompts during
normal operation.

All other prompts usually indicate a problem. Even the "g>" or "b>" prompts can
indicate a problem. To understand problems indicated by the prompts, you need to
know whether bus cycles were executed, how many bus cycles were executed, what
type of bus cycles were executed, and whether the target system is still executing
bus cycles. You can tell the difference between these conditions by checking the
trace status to see if any bus cycles were captured. The analyzer may have states in
its internal pipeline that will not be reported until the trace is halted.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

621

b>th;ts
 Emulation trace halted
 --- Emulation Trace Status ---
 User trace halted <- trace status
 Arm ignored
 Trigger not in memory
 Arm to trigger ?
 States 0 (0) ?..? <- number of states captured
 Sequence term 2
 Occurrence left 1
b>

If the trace status indicates that the trace was halted, look at the number of states
collected to decide how many bus cycles were executed. If the status indicates that
the user trace was completed, a large number of states were executed. If this is the
case, it may help to take another trace to see if bus cycles are still being executed.
Again, view the trace status to determine if bus cycles are executing.

If the "p>" prompt remains after target powerup, check:

• mechanical installation of the probe.

• blown fuses.

• target system power supply voltage.

If the prompt is "c>", mechanical installation may be causing the problem, but the
most likely cause is a problem with the clock. Check clock quality. Look at the
voltage levels, edges, and duty cycle. If you suspect the clock, compare it to the
target system clock without the emulator. If there is a significant difference, you
may need to adjust the target system terminations to account for the emulator’s
termination.

If the prompt is "r>", either the target system never released reset, or the target
system reset itself because of some program error condition. If no bus cycles were
captured by the analyzer, the target system never released reset. You need to find
out which conditions must occur to release reset, and then investigate these
conditions to determine why reset isn’t being released.

An example of a failure to release reset might be a multicard system where the
master card starts the slave cards after verifying that they are installed in the system
by reading checksums from their ROMs. If a checksum is not read correctly, reset
to the associated slave card is not released. If the emulator interfered with the
reading of the checksum, then reset would not be released.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

622

One thing to keep in mind is that the emulator does not trace alternate bus master
cycles while it is reset.

If any bus cycles were executed before the reset occurred, then something caused
the target system to reassert the reset condition. Usually, this is caused by some
type of fault which is detected by the system. This may result from access to a
certain address range or because of a watchdog timeout. Refer to "Interpreting the
Trace List", later in this chapter, to help you understand what caused the reset.

If the prompt is "b>", and there are no cycles in the trace list, the processor never
attempted to run any bus cycles even if other indications show it should have. This
could indicate problems with power, clock, or signal transitions, especially the reset
signal. Check power supply voltage levels. Make sure the power up is monotonic.
Check clock quality. Check that the reset signal meets its required assertion time
after power up and clock stabilization. Check signal quality on the reset signal,
especially the signal transitions.

If some cycles were captured in the trace list, but no cycles are occuring now, check
for setup and hold violations on the processor strobes. All MC68040 signals,
except the interrupt lines and reset signal, are synchronous to the clock and have to
be valid for all rising edges of BCLK. Check timing inputs to the emulator, such as
TA, TEA, and TBI , for setup and hold violations. The "b>" prompt is not a normal
condition for the processor when you find no functional reason. It usually indicates
that the processor has malfunctioned.

One possible cause of a "b>" prompt is the processor missing the end-of-cycle
indication during the cycle of an alternate bus master. The processor monitors the
TS signal during alternate bus master activity to see if it needs to intervene in the
cycle (snooping). If the processor sees a TS signal but misses the corresponding
TA signal, the processor may hang, waiting for this bus cycle to complete, even
though the bus was granted to the MC68040 and released.

If bus cycles are occuring, then the "b>" prompt only indicates that bus cycles are
infrequent. A type of system that would exhibit this behavior would be an
interrupt-driven system. When done processing an interrupt, the system could
execute a STOP instruction to wait for the next interrupt. If the interrupts were
infrequent a "b>" prompt would be displayed.

If the prompt is "w>", the emulator has stopped in the middle of a bus cycle. Get
the emulation status; it will tell you the address and the type of cycle.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

623

w>es
 M68040--CPU in wait state; 00badad00@sd long read
w>

To troubleshoot the above problem, you need to know if the target system provides
bus termination for the address. If the answer is no, then the target program must
have run incorrectly. The emulation-bus analyzer will have to be used to
investigate further. If the answer is yes, then the reason the bus cycle did not
complete must be determined, as described next.

There are many reasons why bus cycle interaction between a target system and an
emulator may fail. Usually the cause is that the target system missed the
start-of-cycle indication from the emulator, or that the emulator missed the
cycle-termination indication from the target system. For a better idea of what is
going on, refer to the MC68040 bus cycle diagram, below:

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

624

A basic MC68040 bus cycle starts with the transfer start signal, TS. The TS signal
pulses low for about one clock cycle. Another signal, transfer in progress TIP stays
low throughout the cycle, but is not necessarily deasserted between cycles. The end
of the cycle occurs when the processor samples a transfer acknowledge TA or a
transfer error acknowledge TEA or both on the rising edge of the clock. Because of
the nature of these signals, most systems are synchronous to the clock. The typical
system will sample TS on the rising clock edge and then generate a TA signal an
intregal number of clocks later. Wait states are added to a cycle by delaying when
the TA is asserted.

If the emulator is configured for wait states (BCLK >25 MHz), then a compatibility
problem with the emulator may be stalling the processor.
w>cf
 cf cache=en
 cf mmu=en
 cf mon=none
 cf rrt=dis
 cf ti=en
 cf wait=en <- configuration for wait states
w>

The emulator requires at least one wait state in all bus cycles when it is configured
as above. The emulator does not add this wait state, but will not accept a TA from
the target system until after a wait state has been added. If TA is asserted by the
target system during the wait state period and is then deasserted before the emulator
allows termination, the bus cycle will never complete.

This particular example can be easily duplicated on the demo board by configuring
for wait states and interlocking memory to the demo board.

cf wait=en
map 0..0ff eram lock
r rst

If there is no functional reason why the bus cycle would not complete, check the
timing relationships between the various bus cycle control signals. Probably the
first measurement you will want to make is to see if the setup time of TA to BCLK
is within the emulator specification.

If there are no cycles in the trace list, then the processor stopped during the first bus
cycle. In this case, it is pretty easy to set up the trace using TS as the trigger
because the cycle of interest is the first cycle. If there are only a few cycles in the
trace list, the same technique can be used if the oscilloscope or timing analyzer has
enough depth.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

625

If there are many cycles in the trace list before the processor stalled, use a different
method of triggering. There are a number of different approaches that can be used.
The most direct method is to trigger on a condition of TIP low and TA high for a
period of time greater than the length of a memory cycle. Another method is to
determine if the system always stops at the same address. This address can then be
used as the trigger. One drawback to this method is that you may have to probe a
large number of signals to get a unique address.

A better way would be to use the emulation-bus analyzer to generate a trigger.
Unfortunately, because the cycle never finishes, the emulation-bus analyzer will not
capture this address, so something preceding this event must be used as the trigger.
Examine the trace list to find a unique event to use as the trigger. Once you have
specified the trigger, you need to configure the emulator to drive the trigger out.
The real trick to crosstriggering is to correlate the trigger event to the captured data.
In this type of measurement, the correlation is easy because the signals of interest
stop transitioning shortly after the trigger occurs.

tg addr=00badad00
tp c
tgout trig2
bnct -r trig2
t

Once you have a trace of the offending cycle, verify that TA is present for a valid
rising clock edge, taking into account a wait state if running faster than 25 MHz. If
TA looks reasonably correct, verify the setup and hold specifications. If TA occurs
but on an invalid clock edge, you may need to make modifications to the target
system to ensure that there is at least one wait state in target cycles. If TA is not
asserted at all, it could be an indication that the target system missed the TS. Set up
your oscilloscope or logic analyzer to make a measurement on your cycle start
circuitry to determine why the target system did not respond to the cycle.

If the cycle where processing stops is part of a burst cycle, as indicated by the line
access type in the status display, there are several things to check.
w>es
 M68040--CPU in wait state; 000000000@sd line read
w>

A burst cycle is shown below. The main characteristic of a burst cycle is that there
are four data transfers as part of one cycle. The processor puts out an address and
asserts TS only once during the cycle. A burst request is indicated by the SIZx
signals. The target memory system can inhibit the burst cycle by asserting the TBI
signal. If the cycle is inhibited, the timing becomes just like a normal cycle. If the
cycle is not inhibited, once TS has been asserted, the process starts sampling TA for

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

626

each data transfer. The cycle is not over until the fourth TA is received. When the
emulator has wait states enabled, a wait state is required between each of the data
transfers in the burst cycle. Evaluating the timing is the same as for a normal cycle.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

627

If the prompt is "g>" and there are no cycles in the trace list, the target system never
gave the bus to the processor. Check the bus arbitration signals for proper
functionality and timing. Refer to the bus arbitration diagram below. Remember
that the analyzer does not trace alternate bus master cycles while the emulator is
reset, but it does once the emulator is running.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

628

When trying to determine why the bus is not being granted to the processor, you
will need to determine why either the bus arbitration circuitry or an alternate bus
master is not behaving correctly. The processor is not the bus master; therefore, it
requests the bus with BR and waits for the target system to grant the bus with BG.
The processor then waits for the BB line to be deasserted, indicating an idle bus,
before taking control of the bus. The processor will not request the bus until after
the reset line has been deasserted.

If the bus is requested by the processor, but it is not being granted check the bus
arbitration signals BB, BG, and BR. If the bus is granted, but never becomes idle,
the alternate bus master may be stuck in the middle of a cycle. Check the cycle
strobes TS, TA, and TEA. These strobes do not have to be asserted during alternate
master accesses, but if TS is shown to the processor, then TA needs to be shown to
end the cycle. While the processor is reset, the only item of concern is signal
quality.

If some cycles are shown in the trace list, but no cycles are occuring now, the
processor executed some cycles before getting stuck in a DMA cycle. Examine the
bus arbitration signals and cycle strobes around where the target system gets stuck.
Use the same techniques to set up a trigger as were described for measuring a bus
cycle that stops before it is complete.

If there are bus cycles occuring, then the "g>" prompt indicates that a high
percentage of the bus activity is by alternate bus masters.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

629

Interpreting the trace list

There are some cases where a problem caused by an errant bus cycle does not show
up until many cycles later. The emulation-bus analyzer must be used to track back
through the sequence of events to the faulty bus cycle. Data problems will often
behave like this, but there may be other causes.

If the "h>" prompt is shown, indicating a double bus fault, and if there are only two
states in the tracelist, this indicates a problem with the fetching of the initial vectors.
h>tl
 Line addr,H 68040 Mnemonic
 ----- -------- --
 0 00000000 $00000000 sdata long read
 1 00000004 $000BADAD sdata long read
 2
h>

The first two cycles in the trace list are the initial stack pointer and the initial
program counter. The initial program counter must be even or the processor will
immediately double bus fault. You should verify that the data captured by the
analyzer is what is expected.

If the data for the vectors is wrong, a trace should be set up to check for access
problems during the fetch of the initial vectors. If the data is completely incorrect,
suspect an address or strobe timing problem. If only a few bits are wrong or if the
data in the trace is correct, suspect a data timing problem.

If there are a lot of cycles in the tracelist, you need to start from the end and work
backwords to understand what caused the double bus fault. If the trace was
completed before the processor stopped, modify the trace specification to "trigger
on nothing" so that the last bus cycles that were run can be captured. Wait until the
emulator status shows a double bus fault, and then halt the trace.

tg never

reset the target system

es
th
tl -20

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

630

h>tl
 Line addr,H 68040 Mnemonic
 ----- -------- --
 -16 00000008 $4AFC0000 sprog long read <- illegal inst
 -15 0000000c $000BADAD sprog long read
 -14 00000010 $000BADAD sprog long read
 -13 00000014 $00000000 sprog long read
 -12 00000018 $00000000 sprog long read
 -11 000000ee $----0010 sdata word write <- illegal inst stack
 -10 000000ea $----0000 sdata word write
 -9 000000ec $0008---- sdata word write
 -8 00000010 $000BADAD sdata long read <- odd vector
 -7 000000e8 $2700---- sdata word write
 -6 000000e4 $000BADAC sdata long write
 -5 000000e2 $----200C sdata word write <- address error stack
 -4 000000de $----0000 sdata word write
 -3 000000e0 $0008---- sdata word write
 -2 0000000c $000BADAD sdata long read <- odd vector
 -1 000000dc $2700---- sdata word write
h>

A double bus fault occurs when the processor encounters an exception that prevents
processing of a previous exception. An example of a double bus fault is shown
above. This original exception occured because the target system tried to execute
an illegal instruction. During processing of the illegal instruction exception, the
processor encountered another exception.

This exception was an address error caused because the vector supplied for the
illegal instruction handler was odd. The double bus fault occured when the vector
supplied for the address error handler was also odd. Other things that can cause a
double bus fault are bus errors that occur during exception stacking or vector fetch.
Keep in mind that bus errors can happen because the the target system asserts TEA
or because of an access violation caused by the MMU.

Once you have found the cause of the double bus fault, you need to determine the
root cause of the problem. In some cases, the exception is a normal part of
execution, but the subsequent faults indicate a problem. In some cases, the first
fault indicates a problem directly, such as when the program has already
malfunctioned, and the fault is caused by an unintentional accesses.

At this point, the problem is to find the faulty bus cycle that eventually caused a
recognizable problem. The same situation exists if the processor stops execution at
an address that should not have been executed, or if a program is simply running
code incorrectly.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

631

There are really only two ways to go about determining what is wrong. One is to
try to trace back the terminal error condition to a faulty bus cycle. The other is to
start at the beginning of the trace, or at some other known point, and work forward,
comparing the trace to the execution that was expected while looking for the point
where execution first becomes unexpected. A listing of the program or a tracelist
captured by a preprocessor could be used for this comparison.

When you find a suspected bus cycle, set up a trigger on it so that you can make a
timing measurement on the cycle. When looking for clues or shortcuts to the
problem, keep in mind that a system is usually made up of many different types of
memory devices: ROM, EEPROM, SRAM, DRAM, and peripheral ports. Each of
these devices may have different timing characteristics. Also, keep in mind that
unique characteristics of a bus cycle, such as size, transfer type, number of wait
states, and bursting may result in unique timing requirements.

Fixing timing problems

When a timing problem is identified, you must decide how to fix it. First, examine
the signal to make sure that signal quality is not affecting the timing. Look for AC
or DC drive problems or reflections caused by transmission line problems. If you
can find no other solution to the problem, you may have to lower the clock speed.

If the timing problem only occurs during data accesses, another possible solution is
to add wait states to the memory access. This assumes that the problem is with the
amount of time it takes to access the memories in the system and is not a problem
with a setup time to a synchronous circuit. A good indicator of this type of
problem is when the data setup time to the emulator is being missed. One point of
caution: the emulator, when configured with wait states (cf wait=en), does not add
a wait state to target accesses. The target system is responsible for adding the wait
state.

Another possible solution to data access problems is to use faster memories while
using the emulator.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

632

Installing the emulator in a target system without
known good software

If you do not have a program in ROM on your target system that you can run to
electrically test the emulator, you will need to create a test environment. The initial
step of this is to use the emulator’s dual-port memory to install a simple program
that will run from reset. To do this, proceed as follows:

1 Turn on emulator power.

2 Check the prompt by pressing the carriage return key.
The prompt should be "p>". A "->" prompt indicates a software compatibility
problem. Correct problems indicated in error messages or check the version
"ver" for more information.

3 Configure the emulator by entering the following commands:

cf mon=none
cf cache=en
cf mmu=en
cf ti=en
cf wait=<en,dis>, as appropriate for the target system

4 Map dual-port memory with the following command:

map 0..0fff eram dp,lock

This maps a block of emulation memory starting at address 0 so that the reset
vectors will be accessed from this block. The block is configured to be
interlocked to the target system strobes because all systems must have some
memory that responds at address 0 to operate.

5 Load a program with the following commands:

mo -ax -dl
m 0=0f00,100
mo -dw
m 100=60fe

This sets up the reset vectors ISP=0f00 and IPC=100. It then loads the most
simple program imaginable: jump to self.

6 Setup a trace to capture all MC68040 cycles, as follows:

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

633

tck -u
tg any
tsto any
tp c
t

7 Execute r rst .

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

8 Power on the target system.

9 Verify correct operation.

The target system should run the same as when the target processor was being used.
The first indication of whether or not your target system is working is to see if your
program performs any I/O that can verify correct system operation. If your target
system appears to work initially, allow it to reach normal operating temperature
before concluding that target system operation is as it should be.

If the target system appears to work properly, go ahead to the paragraph titled
"Installing a Monitor". If you suspect problems, return to "Verifying System
Operation" in the previous paragraphs. Keep in mind that the emulator must
receive strobes from the target system for emulation memory accesses to complete.
Also, because these cycles are from internal emulation memory, the data on the
target system will not be the same as what the processor sees. If you think that
there are problems with emulation memory data, check the clock speed
configuration; the emulator is designed to give correct data at all speeds of
operation.

Chapter 18: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

634

Installing Emulator Features

Once the emulator is transparently running in the target system, it is time to start
adding other emulator features. Dividing the installation of features into two tasks
is the easiest way to debug problems. The monitor is the facility that provides the
majority of the emulator’s features, but some features like the reset circuitry do not
require the monitor. The first feature to be installed does not depend on the
monitor.

Evaluating the reset facilities

Now is a good time to use the emulator to find out how the emulator reset interacts
with your target system. The first question to answer is whether or not the emulator
reset command is adequate to reset your target system. Perform the following steps:

1 Run your target program by following the procedure in the previous steps.

2 Reset the emulation processor and run your program using the emulator
commands:

r rst

Note that the "r rst" command pulses the processor reset line.

3 Verify correct operation.

If your program does not run correctly after performing the above procedure, your
target system has other circuitry besides the processor that must be reset. The
emulator only resets the emulation processor when it responds to a reset command.
Other circuitry on your target system does not get reset. The following sequence
determines if an additional reset circuit is required.

4 Run your target program following the procedure in the previous steps.

5 Reset the emulation processor and run your target program using these
emulator commands:

rst

Reset the target system using whatever facility is available.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

635

r rst

6 Verify correct operation of the target system.

An example of a target system that requires an additional reset circuit is one that
normally has RAM starting at address 0, but for the first two bus cycles after reset,
maps ROM to this area instead to provide the inital vectors. If this remapping does
not occur, the system will attempt to fetch these vectors out of RAM, which will
fail.

For systems that require additional circuitry to be initialized by reset, a reset output
from the emulation probe (called reset flying lead) is provided. This reset flying
lead can be connected into your target circuitry to eliminate the need for an
additional step to reset circuitry in your target system. This allows the whole reset
procedure to be controlled by the emulator, automatically.

One additional thing to keep in mind is that your target system can initiate a reset
without the knowledge of the emulator. A reset that is initiated by your target
system will reset the emulator. If the emulator was running your target program at
the time of the reset, then when your system releases reset, the emulator will run as
if an r rst command had been issued. If the emulator was executing in the monitor
at the time of the reset, it will return to the monitor when the reset is released.

Another resetting method that may provide more convenience than the first method
requires use of the monitor. This method works well for target systems such as
those in the example above. This method resets the emulator into the monitor
instead of running the target system program immediately. Once in the monitor,
the initial stack pointer and initial PC can be loaded into the appropriate registers,
and then a run of the target program can be initiated. This method will be
illustrated in the next section.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

636

Installing the background monitor

The emulator allows you to choose between use of a background and foreground
monitor, but the choice is really predetermined by which of the MC68040 features
you will be using.

The background monitor does not support use of the MMU, the caches, or DMA.
Therefore, the background monitor is only useful in the most simple systems, or to
provided a mechanism for testing target hardware, or to further evaluate the
integration of the emulator with your target system.

The background monitor does not show cycles to your target system. It
accomplishes this by blocking the TS and TIP signals. Therefore, the background
monitor is transparent to your target system. Even though the background monitor
does not show its cycles to the target system, the initial vector fetch cycles are
shown to the target system and interlocked with the target system strobes. Cycles
not shown to the target system are called background cycles. All other cycles are
called foreground cycles.

Resetting into the background monitor

There are three ways to initially get into the background monitor. The first of these
ways is to enter the monitor from reset. Perform the following command sequence
to enter the monitor:

1 Reset the emulator and the target system if necessary using any reset procedure
you determined to work adequately.

2 Configure the emulator by entering the following commands:

cf mon=bg
cf monkaa=none
cf cache=dis
cf mmu=dis
cf ti=en
cf wait=<en,dis>, as appropriate for the target system

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

637

3 Set up a trace to capture all MC68040 cycles, including background monitor
cycles, by entering the following commands:

tck -ub
tsto any
tg any
t

4 Execute the command: rst -m. This tells the emulator to release reset, but
enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M>", indicating that operation is in the monitor. There
is not much that can go wrong up to this point because everything required has
been previously verified.

If you see the following error messages, something went wrong during the initial
vector fetches from the target system. Check these cycles for problems.

!STATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
!STATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you see a "g>" prompt, the background monitor is not compatible with this type
of target system. Go to the paragraph titled "Installing the Foreground Monitor".

If you get the "?>" prompt or something other than the "M>" prompt, this indicates
something went wrong with monitor operation. This may indicate problems with
the clock or reset signals. Because the emulator provides all control signals for the
background monitor, typically problems are with signals that can prevent the
processor from running bus cycles.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

638

Dealing with keep-alive circuitry while using the
background monitor

Another thing to watch for when using the background monitor is the triggering of
a target system keep-alive circuit because monitor bus cycles are hidden.
Depending on how a keep-alive circuit operates, the monitor may cause a problem.
The symptoms for different keep alive circuits may not show up in the same way.

Keep-alive circuits that monitor accesses on the bus or require a certain address to
be accessed probably will fail when you use the background monitor. Keep-alive
circuits that make sure bus cycles complete will not fail. If the keep-alive circuit
generates a bus error or an interrupt, the monitor will not be affected immediately.
If the keep-alive circuit asserts reset instead, monitor operation will be affected
immediately, although there may be no apparant symptoms if reset is only asserted
temporarily because the monitor will be reentered as soon as reset is deasserted.

If you suspect a problem with a keep-alive circuit, there is a configuration option
that can make the background monitor periodically cause a read access to a
particular address. If you do need a particular address to be read for the keep-alive
function, make sure the address you give will respond with memory strobes when
accessed.

cf monkaa=0deadad0

Retry the reset into monitor with this configuration enabled. If there is any sort of
problem with the keep-alive access, it will probably show up as a wait state at the
keep-alive address. If this happens, check the timing on that particular cycle. The
keep-alive address may respond with a bus error without adversly affecting monitor
operation.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

639

Testing memory accesses with the background
monitor

Once the background monitor looks like it is running properly, you can use it to test
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. It is also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m 0badad=12345678

When accesses to your target memory do not execute exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check
the integrity of the data written. When testing memory accesses, the data should be
checked to make sure that it is correct.

M>m 0badad
 0000badad ffdf00ff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message:

!STATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
!ERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information:

!ERROR 170! Target bus error: 0000badad@sd
!ERROR 700! Target memory access failed

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

640

Running a program from the background monitor

Once you are satisfied that the monitor is working and that memory in your target
system can be accessed correctly, you can use the monitor to run your target
program. Proceed as follows:

1 Reset into the monitor.

2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<target program starting address>

If these values are not known, they can be found by taking a trace of the
program running from reset, as was done in the previous sections.

4 Take a trace of the program running, using the following commands:

tg addr=<long aligned target program starting address>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems you see. The monitor runs the program by creating a stack
in foreground memory at the location indicated by the initial stack pointer. The
monitor then initiates an RTE, which starts the target program running. The
following trace list is an example showing correct operation:

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

641

 Line addr,H 68040 Mnemonic
----- -------- --
 -4 000000f0 $00------ mon sdata byte read
 -3 000009b4 $4E714E71 mon sprog long read
 -2 000000ec $000a007C sdata long read <-unstack
 -1 000000e8 $27000000 sdata long read <-unstack
 0 00000008 $000060FE sprog long read <-target program
 1 0000000c $000BADAD sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the error messages
listed below.

From this point on, most of the problems will be discussed from a functional point
of view instead of a parametric point of view. If any of the functional problems
discussed below identify a problem that looks parametric, use the debugging
techniques of the previous procedures to isolate the problem.

!ERROR 151! Interrupt stack pointer is odd or uninitialized
!ERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word-aligned stack
pointers are allowed with the emulator. If this error is seen, the run will not be
attempted.

!ERROR 170! Target bus error: 0000000e8@sd
!ERROR 610! Unable to run

This message indicates a bus error occured during the stack write. This behavior
could be caused by putting the stack in a memory range that responded with bus
error for all accesses, or bus error on write accesses. Or, it could be caused by
putting the stack where nothing responds, and the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

!STATUS 170! Emulator terminated hung bus cycle: 0000000e8@sd long write
!ERROR 610! Unable to run

This message indicates that the stack is in an address range that did not respond
with a memory strobe. Make sure that the stack is placed in valid memory.

!ERROR 151! Interrupt stack is not located in RAM: 0000000e8@sd
!ERROR 610! Unable to run

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

642

This message indicates that the stack memory was not writeable. Check to make
sure that the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some other
problem, the stack can be decoded to see if the correct information is present there.
The stack above is interpreted as follows: The initial stack pointer is defined to
point to the next available stack location. Therefore the exit stack starts four words
below the initial stack pointer.
ISP-8 -> Status register = 2700
ISP-6 -> Program Counter = 0000000a
ISP-2 -> Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.
Therefore, the only difference you will see in this stack frame will be because of
different initial program counter values.

The procedure of setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP>,<initial PC>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors similar to the example in
the "Evaluating the Reset Facility" section.

rst -m
r

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

643

Breaking into the background monitor

The next thing to try with the background monitor is to see if you can break into it
from your target program. The emulator uses a nonmaskable interrupt (interrupt 7)
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking; it is also shown to the
target system. The emulator provides the data for this vector fetch to correctly run
the background monitor. After stacking and the vector fetch are completed, the
emulator transitions into the background monitor. The background monitor may
access foreground memory during its operation.

While the emulator is in the background monitor, no target interrupts are serviced.
The interrupt signals from the target system are ignored while in the background
monitor. The emulator will not respond to these signals in any way while in the
monitor. If the signals are still present when the monitor is exited, they will be
serviced according to normal interrupt priorities.

Entry into the background monitor can be traced by using the following trigger
specification:

tck -ub
tp c
tg stat=11xxxxxxxx1x111xy
t
b

 Line addr,H 68040 Mnemonic
----- -------- --
 -2 00000008 $60FE0000 sprog long read
 -1 0000000c $000BADAD sprog long read
 0 ffffffff $------FF mon int7 ack <-acknowledge
 1 000000ee $----007C sdata word write <-stack format
 2 000000ea $----0000 sdata word write <-stack PC high
 3 000000ec $0008---- sdata word write <-stack PC low
 4 0000007c $0000069C sdata long read <-vector fetch
 5 000000e8 $2700---- sdata word write <-stack SR
 6 00000698 $0012FFFF mon sprog long read <-monitor
 7 0000069c $11FC001F mon sprog long read

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

644

If you have problems trying to break into the monitor, the most likely causes are the
values of the stack pointers, or the vector base register does not point to valid
memory. Any bus errors that occur during monitor entry will cause the break to
fail. If any stacking or vector fetch cycles are not terminated, the monitor will
terminate them by force. If this happens, the PC and SR may be displayed
incorrectly by the monitor. The same problem can result from stack memory that is
not writeable. Neither condition will inhibit entry into the monitor, but the target
state will be corrupted.

Exiting the background monitor

If the procedures described in the preceding paragraphs gave satisfactory results,
you should be able to resume execution of the target program. You may want to
take a trace of the monitor exit procedure to verify that it is completed correctly.

r

If the target system and emulator do not work correctly after exiting the background
monitor, the problem may be because your target system is real-time sensitive. If
interrupts that needed to be serviced to keep the target system running were delayed
by the monitor, things such as data overrun could cause problems in the target
system. If you suspect such a problem, use the foreground monitor.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

645

Software breakpoint entry into the background
monitor

The background monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command.

bc -e bp

Set breakpoints only on the initial word of an instruction; otherwise, they will not
be executed, and might alter an instruction, unintentionally. The emulator can
place a breakpoint using one of two methods. By default, the emulator will attempt
to modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when that address is fetched.

b
bp <instruction address>

If you suspect a problem occurred during the setting of the breakpoint, you can use
the analyzer to watch the breakpoint being set. The easiest way to do this is to
store-qualify your trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed this address.

tg any
tsto addr=<instruction address>
b
bp <instruction address>

 Line addr,H 68040 Mnemonic
----- -------- --
 0 00000008 $FFFF---- sdata word read
 1 00000008 $FFFF---- sdata word read
 2 00000008 $FFFF---- sdata word read
 3 00000008 $484F---- sdata word write <- breakpoint write
 4 00000008 $FFFF---- sdata word read <- verify
 5 00000008 $FFFF---- sdata word read
 6

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

646

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch procede the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tsto any
tg stat=11xxxxxxxx1x000xy
t
r 8
 Line addr,H 68040 Mnemonic
----- -------- --
 -4 00000008 $484F0000 sprog long read <-bkpt fetch
 -3 0000000c $000BADAD sprog long read
 -2 00000010 $000BADAD sprog long read
 -1 00000014 $00000000 sprog long read
 0 00000000 $41------ bkpt ack (buserror) <-acknowledge
 1 000000ee $----0010 sdata word write <-stack format
 2 000000ea $----0000 sdata word write <-stack PC high
 3 000000ec $0008---- sdata word write <-stack PC low
 4 00000010 $00000690 sdata long read <-vector fetch
 5 000000e8 $2700---- sdata word write <-stack SR
 6 00000690 $11FC0004 mon sprog long read <-monitor
 7 00000694 $01186000 mon sprog long read

The only unique portion of a breakpoint entry is the breakpoint-acknowledge cycle
so any problems that you see will probably be related to this cycle. Because the
emulator internally responds to this cycle, it is not necessary for the target system to
respond to it. If the target system does respond to this cycle with any wait states,
the emulator may become out of sync with the target system because the emulator
terminates this cycle immediately. If this were to cause a problem, it would show
up on the cycle immediately following the breakpoint-acknowledge cycle.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

647

Stepping with the background monitor

The last feature of the background monitor which needs to be evaluated is the
single-stepping facility. The emulator uses a combination of the processor trace
facility and a nonmaskable interrupt to reenter the monitor after executing exactly
one instruction.

b
tsto any
tg stat=11xxxxxxxx1x111xy
t
s
 000000008@s - BRA.B $00000008
 PC = 000000008@s

When a step command is issued, the emulator sets the trace bits in the SR and then
performs a normal monitor exit. The emulator then forces a break to return to the
monitor. A typical trace of a single step is shown below:

 Line addr,H 68040 Mnemonic
 ----- -------- --
 -17 000009b0 $4E714E71 mon sprog long read
 -16 000000f0 $00------ mon sdata byte read
 -15 000009b4 $4E714E71 mon sprog long read
 -14 000000ec $0008007C sdata long read <- unstack
 -13 000000e8 $A7000000 sdata long read <- unstack
 -12 00000008 $60FE0000 sprog long read <- stepped inst
 -11 0000000c $000BADAD sprog long read
 -10 00000008 $60FE0000 sprog long read
 -9 0000000c $000BADAD sprog long read
 -8 000000ec $00000008 sdata long write <- trace stack addr
 -7 000000ea $----2024 sdata word write <- trace stack format
 -6 000000e6 $----0000 sdata word write <- trace stack PC up
 -5 000000e8 $0008---- sdata word write <- trace stack PC low
 -4 00000024 $00000000 sdata long read <- trace vector fetch
 -3 000000e4 $A700---- sdata word write <- trace stack SR
 -2 00000000 $000000F0 sprog long read <- trace prefetch
 -1 00000004 $00000008 sprog long read <- trace prefetch
 0 ffffffff $------FF mon int7 ack <- break acknowledge
 1 000000e2 $----007C sdata word write <- break stack format
 2 000000de $----0000 sdata word write <- break stack PC up
 3 000000e0 $0000---- sdata word write <- break stack PC low
 4 0000007c $0000069C sdata long read <- break vector fetch
 5 000000dc $2700---- sdata word write <- break stack SR
 6 00000698 $0012FFFF mon sprog long read <- monitor
 7 0000069c $11FC001F mon sprog long read

At the end of the execution of the first target program instruction, the processor
takes a trace exception. Stacking for this trace exception commences and at some
point, the trace vector is fetched. Once stacking for the trace is complete, the
processor prefetches from the address of the trace handler, but these instructions are

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

648

never executed because the processor immediately starts interrupt processing. The
interrupt processing proceeds the same as in a normal break.

Before exiting for a step, the monitor checks to make sure that the trace vector is
valid and that it points to accessable memory. If the vector is not even, or if the
memory it points to responds with a bus error or hangs, the emulator temporarily
modifies the trace vector to point to the start of the vector table. Because the
instructions of the trace handler will not be executed, the content of the address
locations is not important.

If the emulator modifies the trace vector, the following status message is given:

!STATUS 155! Vector table modified for single stepping

If the emulator finds it must modify the trace vector for single stepping to complete,
but the modification attempt fails, an error message similar to the following is
displayed:

!ERROR 170! Target bus error: 0ff800024@sd
!ERROR 156! Unable to modify trace vector to ff800000h for single stepping
!ERROR 680! Stepping failed

If this error occurs, the vector table must be modified so that the trace vector
contains an address that points to accessable memory. If the vectors are in ROM,
perhaps the memory can be copied into emulation memory where you can modify it.

One way to watch what the emulator is doing during a step, is to set up the analyzer
to trace only foreground cycles and to store everything. This lets you watch the
emulator check and possibly modify the trace exeception vector. Use the following
commands:

tck -u
tsto any
tg any
t
s

The emulator may experience problems when stepping over instructions that
modify the VBR. This is because the check of the trace exception vector is made
using the old VBR value, but the actual stacking will use the new value of the
VBR. If the new VBR value changes the trace exception vector to something that
would require modification, then stepping can fail.

!ERROR 680! Stepping failed

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

649

When stepping over instructions that cause the processor to take exceptions, the
trace list can look very different. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK and CHK2)
create their stack frame and then take the trace exception. Any exceptions cause
the step trace list to look different. In all cases, the monitor is still entered through
the interrupt 7 exception.

For all exceptions except TRAP, CHK, and CHK2, the trace stack frame will be
missing when the monitor is entered. Instead of using the trace stack frame, the
exception stack frame will be used. The emulator detects that and issues an error
message that says stepping failed. This error message does not actually indicate a
problem with emulator stepping; it just indicates that an exception was hit. The
emulator is stopped at the starting address of the exception handler, and stepping
can be resumed.

The TRAP, CHK, and CHK2 exceptions will have an additional stack frame when
the monitor is entered. The exception stack frame will precede the normal trace
and interrupt stack frames. These exceptions do not cause the monitor to issue an
error message so multiple steps will not stop on this type of exception.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

650

Installing the foreground monitor

The foreground monitor supports all features of the emulator, but imposes on your
target system more than the background monitor. The foreground monitor occupies
a 4-Kbyte block in your target memory space. The emulator provides memory for
this 4-Kbyte block, but the target system cannot use this address range for anything.
The cycles strobes TS and TIP are shown to the target system during foreground
monitor cycles. The monitor needs to be placed in an address range where it will
not interfere with target system operation.

If the monitor is placed in an address range where the target system responds with a
TA, interlock the monitor to the target strobes. The target system must not respond
with TEA for this address range. If the monitor is placed in an address range where
the target system does not respond with any strobes, do not interlock the monitor.
If in doubt, interlock the foreground monitor to the target system. It will be
obvious if this is the wrong thing to do because the monitor will stop operating
immediately.

If the MMU is being used, the monitor must be placed in an address range that is
translated logical=physical, and is writeable for supervisor program and data. If the
memory management scheme is dynamic, the monitor page must be resident at all
times. In addition, any pages required for stacking or vector fetches must also be
resident.

If there is not a suitable address range in which to put the monitor, the system
protection schemes may need to be modified to create a place for the monitor. This
may be as simple as adding an entry to the MMU tables, or it may require
modifying a hardware protection scheme to allow placement of the monitor.

Besides adding special requirements to the placement of the monitor, the MMU
impacts many operations of the emulator and processor. When the MMU is on, the
emulator can access both physical and logical memory. The emulator also provides
commands to examine the MMU tables.

With the MMU on, there are new problems added to the task of connecting the
emulator probe into a target system. Besides making sure that the restrictions noted
above are complied with, interpreting the trace list becomes more difficult. You
also need to keep in mind the distinctions between logical and physical memory
accesses when accessing memory. Finally, you need to find out whether you need
to load your program before the MMU is running or while it is running.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

651

The foreground monitor, in contrast to the background monitor, allows servicing of
interrupts. When the foreground monitor is not busy performing some action,
interrupts are allowed. The interrupt routine must return control to the monitor
within a reasonable period of time or the monitor may timeout if it attempts to do
something. The level of interrupt that can be recognized by the monitor can be
controlled through a configuration question:

cf monint=0

Resetting into the foreground monitor

If you have successfully established operation of the background monitor, or if you
have decided that you cannot use the background monitor because you need certain
MC68040 features, then it is time to evaluate the foreground monitor. The first
thing to do is to enter the foreground monitor from reset. Perform the following
command sequence to enter the monitor.

1 Reset the emulator, and the target system if necessary, using whatever reset
procedure you determined to work.

2 Configure the emulator, as follows:

cf mon=fg
cf monaddr=addr as appropriate for the target system
cf monlock=<en,dis> as appropriate for the address mapping
cf monint=0
cf cache=en
cf mmu=en
cf ti=en
cf wait=<en,dis> as appropriate for the target system

3 Set up a trace to capture all MC68040 cycles. Background cycles do not need
to be traced to see foreground monitor operation.

tg any
tsto any
tck -u
t

4 Execute the command: rst -m

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

652

This tells the emulator to release reset, but enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M>", indicating correct operation in the monitor.
There is not much that can go wrong up to this point since everything required
has been previously verified.

If you get the following error messages, a failure occurred during the initial vector
fetches from the target system. Check these cycles for problems.

!STATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
!STATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you get a "w>" prompt for a monitor address, you may have incorrectly
interlocked the monitor to the target system. If the monitor was correctly
interlocked, check to see if there is a timing problem with the target terminations
for the monitor address range.

If you get the "b>" prompt or something other than the "M>" prompt, suspect a
failure in monitor operation. These prompts may indicate problems with the clock
or reset signals. If the monitor is interlocked, it may also indicate that the target
system responded with a bus error for a monitor access.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

653

Dealing with keep-alive circuitry by using the
custom foreground monitor

As with the background monitor, you may have problems with keep-alive circuitry
located in the target system. Because the foreground monitor cycles are shown to
the target system, bus cycle activity monitors should not be a problem. Also,
because interrupts can be serviced within a reasonable period of time, any
keep-alive circuits that depend on interrupts should not be a problem.

Keep-alive circuits that require a certain address to be accessed probably will fail
when you are using the foreground monitor. The keep-alive problem will most
likely show up immediately when using the foreground monitor. If the monitor is
interlocked, it will be affected immediately if a keep-alive circuit causes a bus
error. If a keep-alive circuit generates an interrupt or a reset, it should also be
immediately obvious. If reset is only temporarily asserted, it may not be so obvious
because the emulator will return to the monitor when it is released.

If you suspect a problem with a keep-alive circuit, try using the custom foreground
monitor. This monitor can be customized to take the required actions to satisfy a
keep-alive circuit. See Chapter 8, "Configuring the Emulator", for information on
using the custom foreground monitor. Retry your reset into the monitor with the
customized foreground monitor.

If keep-alive circuits cannot be accommodated by using the available emulator
features, you may need to disable them for emulation.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

654

Testing memory access with the foreground
monitor

Once the foreground monitor looks like it is running properly, you can use it to test
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. It is also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m 0badad=12345678

When accesses to your target memory are not performed exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check
the integrity of the data written. When testing memory accesses, check the data to
make sure it is correct.
M>m 0badad
 0000badad ffdf00ff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message.

!STATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
!ERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information.

!ERROR 170! Target bus error: 0000badad@sd
!ERROR 700! Target memory access failed

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

655

Running a program from the foreground monitor

Once you are satisfied that the monitor is working and that memory in your target
system can be accessed correctly, you can use the monitor to run your target
program. Use the following procedure:

1 Reset into the monitor.

2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<starting address of target program>

If you do not know these values, you can find them by taking a trace of the
program running from reset as done in the previous sections.

4 Take a trace of the program as it is running, using the following commands:

tg addr=<long aligned starting address of target program>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems that you see. The monitor runs the program by creating a
stack in memory at the location indicated by the initial stack pointer. The monitor
then initiates an RTE, which starts the target program running. The following trace
list shows an example of correct operation:

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

656

 Line addr,H 68040 Mnemonic
----- -------- --
 -4 000010f0 $00------ log sdata byte read
 -3 00001e74 $4E714E71 log sprog long read
 -2 0000f0ec $000a007C log sdata long read <-unstack
 -1 0000f0e8 $27000000 log sdata long read <-unstack
 0 00000008 $000060FE log sprog long read <-target program
 1 0000000c $000BADAD log sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the following error
messages:

!ERROR 151! Interrupt stack pointer is odd or uninitialized
!ERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word aligned stack
pointers are allowed with the emulator. The run is not attempted.

!ERROR 170! Target bus error: 00000f0e8@sd
!ERROR 610! Unable to run

This message indicates a bus error occurred during the stack write. This behavior
can be caused if the stack is in a memory range that responds with bus error for all
accesses or for write accesses. Or, this behavior can be caused by putting the stack
where the target system fails to respond immediately; the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

!STATUS 170! Emulator terminated hung bus cycle: 00000f0e8@sd long write
!ERROR 610! Unable to run

This indicates that the stack is in an address range that did not respond with a
memory strobe. Make sure that the stack is placed in valid memory.

!ERROR 151! Interrupt stack is not located in RAM: 00000f0e8@sd
!ERROR 610! Unable to run

This indicates that the stack memory was not writeable. Check to make sure that
the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some other
problem, the stack can be decoded to see if the correct information is present. The
stack above is interpreted as follows: The initial stack pointer is defined to point to

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

657

the next available stack location. Therefore, the exit stack starts four words below
the initial stack pointer.
ISP-8 - Status register = 2700
ISP-6 - Program Counter = 0000000a
ISP-2 - Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.
Therefore, the only difference you will see in this stack frame will be because of
different initial program counters.

The procedure for setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP>,<target program starting address>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors.

rst -m
r

Breaking into the foreground monitor

The next thing to try with the foreground monitor is to see if you can break into it
from your target program. The emulator uses a nonmaskable interrupt (interrupt 7)
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking. The emulator provides the
data for this vector fetch to correctly run the foreground monitor. While the
emulator is transitioning into the foreground monitor, interrupts are temporarily
blocked. Once in the monitor the interrupt mask level is lowered to the greater of
the "monint" configuration setting or the target program mask level.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

658

Entry into the foreground monitor can be traced by using the following trigger
specification. The interrupt acknowledge signal is not shown to the target system
and is also not shown to the analyzer unless background cycles are being traced.

tck -ub
tp c
tg stat=11xxxxxxxx1x111xy
t
b

 Line addr,H 68040 Mnemonic
----- -------- --
 -2 00000008 $60FE0000 phy sprog long read
 -1 0000000c $00000000 phy sprog long read
 0 ffffffff $------FF mon int7 ack <- acknowledge
 1 00000200 $0000040B mmu twalk data long read <- twalk stack
 2 00000400 $0000060B mmu twalk data long read
 3 0000063c $0000F01B mmu twalk data long read
 4 0000f0ee $----007C phy sdata word write <- stack format
 5 0000f0ea $----0000 phy sdata word write <- stack PC high
 6 0000f0ec $0008---- phy sdata word write <-stack PC low
 7 00000200 $0000040B mmu twalk data long read <- twalk vector
 8 00000400 $0000060B mmu twalk data long read
 9 00000600 $0000009F mmu twalk data long read
 10 0000007c $000016C2 phy sdata long read <- vector fetch
 11 0000f0e8 $2700---- phy sdata word write <- stack SR
 12 00000200 $0000040B twalk prog long read <- twalk monitor
 13 00000400 $0000060B twalk prog long read
 14 00000600 $0000101b twalk prog long read
 15 000016c0 $4E732F0D phy sprog long read <- monitor
 16 000016c4 $4BFAFB10 phy sprog long read

If you have problems trying to break into the monitor, the most likely causes are
that the stack pointers or vector base register do not point to valid memory. Any
exceptions during monitor entry will cause the break to fail. Access errors during
stacking or vector fetches are the most common causes of failures. The target
system can respond with a bus error, or if the MMU is running, the MMU can
signal an access error. The MMU will signal an error if a translation is not
available, if a bus error occurs during translation lookup, or if a write-protection
error occurs.

The break will also fail if accesses to the monitor cause an exception. This includes
bus errors and access errors signaled by the MMU. It is possible for the monitor to
execute correctly until the MMU is enabled, and then have problems. Keep in
mind that the monitor must be translated logical=physical and located in address
space that is not write-protected.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

659

If any stacking or vector-fetch cycles are not terminated, the monitor will terminate
them by force. If this happens, the PC and SR may be displayed incorrectly by the
monitor. The same problem can result from stack memory that is not writeable.
Neither condition will prevent entry into the monitor, but you will not be able to
resume execution in the target program.

Exiting the foreground monitor

If the tests of the preceding paragraphs operate correctly, you should be able to
resume execution of the target program. You may want to take a trace of the
monitor exit to verify that everything is working correctly. Use the run command:

r

Software breakpoint entry into the foreground
monitor

The foreground monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command:

bc -e bp

Only set breakpoints on the initial word of an instruction; otherwise, they will not
be executed, and they may alter an instruction, unintentionally. The emulator can
place a breakpoint using two methods. By default, the emulator will attempt to
modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when the associated address is fetched. You can tell if a hardware
resource was required to support a breakpoint by viewing memory at the breakpoint
address. If the BKPT instruction has replaced the normal instruction at that
address, a software breakpoint was used. If the normal instruction is still in the

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

660

breakpoint address, the emulator is using one of its eight hardware resources to
implement the breakpoint.

b
bp <program instruction>

If you suspect some kind of problem with the setting of the breakpoint, use the
analyzer to watch the setting of the breakpoint. The easiest way to do this is to
store-qualify the trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed the breakpoint address.

If the MMU is running, you will need to store-qualify the actual physical address
being accessed. The address given in the "bp" command must always be treated as
a logical address. To find the corresponding physical address, use the MMU
translation command. Also, keep in mind that the MMU may cause problems when
setting the breakpoint.

mmu -t <logical breakpoint address>

tg any
tsto addr=<physical breakpoint address>
b
bp <logical breakpoint address>

 Line addr,H 68040 Mnemonic
----- -------- --
 0 00000008 $FFFF---- phy sdata word read
 1 00000008 $FFFF---- phy sdata word read
 2 00000008 $FFFF---- phy sdata word read
 3 00000008 $484F---- phy sdata word write <- breakpoint write
 4 00000008 $FFFF---- phy sdata word read <- verify
 5 00000008 $FFFF---- phy sdata word read
 6

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

661

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch proceed the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tck -u
tsto any
tg stat=11xxxxxxxx1x000xy
t
r 8

 Line addr,H 68040 Mnemonic
----- -------- --
 -4 00000008 $484F0000 log sprog long read <- bkpt fetch
 -3 0000000c $00000000 log sprog long read
 -2 00000010 $01000000 log sprog long read
 -1 00000014 $00000000 log sprog long read
 0 00000000 $41------ bkpt ack (buserror) <- acknowledge
 1 00000200 $0000040B mmu twalk data long read <- twalk stack
 2 00000400 $0000060B mmu twalk data long read
 3 0000063c $0000F01B mmu twalk data long read
 4 0000f0ee $----0010 phy sdata word write <- stack format
 5 0000f0ea $----0000 phy sdata word write <- stack PC high
 6 0000f0ec $0008---- phy sdata word write <- stack PC low
 7 00000200 $0000040B mmu twalk data long read <- twalk vector
 8 00000400 $0000060B mmu twalk data long read
 9 00000600 $0000009F mmu twalk data long read
 10 00000010 $000016A2 phy sdata long read <- vector fetch
 11 0000f0e8 $2700---- phy sdata word write <- stack SR
 12 00000200 $0000040B twalk prog long read <- twalk monitor
 13 00000400 $0000060B twalk prog long read
 14 00000600 $0000101b twalk prog long read
 15 000016a0 $007E2F0D phy sprog long read <- monitor
 16 000016a4 $4BFAFA73 phy sprog long read

The only unique part of a breakpoint entry is the breakpoint-acknowledge cycle so
any problems will probably be related to this cycle. Because the emulator
internally responds to this cycle, it is not necessary for the target system to respond
to it. If the target system responds to this cycle with any wait states, the emulator
may become out of sync with the target system because the emulator terminates this
cycle immediately. If this causes a problem, it will show up on the cycle
immediately following the breakpoint-acknowledge cycle.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

662

Stepping with the foreground monitor

The last feature of the foreground monitor that needs to be evaluated is the
single-stepping facility. The emulator uses the processor trace facility to reenter the
monitor after executing exactly one instruction, unless an exception occurs.

b
tsto any
tg stat=11xxxxxxxx1x000xy
t
s
 000000008@s - BRA.B $00000008
 PC = 000000008@s

When a step command is issued, the emulator sets the trace bits in the SR, and then
performs a normal monitor exit. The emulator modifies the trace vector to transfer
control to the monitor. A typical trace of a single step is shown below:

 Line addr,H 68040 Mnemonic
----- -------- --
 -42 000010f0 $00------ log sdata byte read
 -41 00001e74 $4E714E71 log sprog long read
 -40 00000200 $0000040B mmu twalk data long read <- twalk stack
 -39 00000400 $0000060B mmu twalk data long read
 -38 0000063c $0000F01B mmu twalk data long read
 -37 0000f0ec $0008007C log sdata long read <- unstack
 -36 0000f0e8 $A7000000 log sdata long read <- unstack
 -35 00000200 $0000040B twalk prog long read <- twalk monitor
 -34 00000400 $0000060B twalk prog long read
 -33 00000600 $0000009f twalk prog long read
 -32 00000008 $60FE0000 log sprog long read <- stepped inst
 -31 0000000c $00000000 log sprog long read
 -30 00000008 $60FE0000 log sprog long read
 -29 0000000c $00000000 log sprog long read
 -28 0000f0ec $00000008 log sdata long write <- stack address
 -27 0000f0ea $----2024 log sdata word write <- stack format
 -26 0000f0e6 $----0000 log sdata word write <- stack PC high
 -25 0000f0e8 $0008---- log sdata word write <- stack PC low
 -24 00000200 $0000040B mmu twalk data long read <- twalk vector
 -23 00000400 $0000060B mmu twalk data long read
 -22 00000600 $0000009F mmu twalk data long read
 -21 00000024 $00001680 log sdata long read <- vector fetch
 -20 0000f0e4 $A700---- log sdata word write <- stack SR
 -19 00001680 $2F0D4BFA log sprog long read <- monitor
 -18 00001684 $FB523ABC log sprog long read
 -17 00001688 $20246000 log sprog long read
 -16 0000168c $00924BFA log sprog long read
 -15 0000f0e0 $00000000 log sdata long write

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

663

 -14 00001718 $2F256000 log sprog long read
 -13 000011d6 $----2024 log sdata word write
 -12 0000171c $0022083A log sprog long read
 -11 00001720 $0002F9D6 log sprog long read
 -10 00001724 $67184BFA log sprog long read
 -9 00001728 $F9F108D5 log sprog long read
 -8 000010f8 $F5------ log sdata byte read
 -7 0000172c $0003484F log sprog long read <- monitor bkpt
 -6 00001730 $4E7AD002 log sprog long read
 -5 00001734 $4A8D6A06 log sprog long read
 -4 00001738 $F4784BFA log sprog long read
 -3 00001119 $--03---- log sdata byte read
 -2 0000173c $F8C40C3A log sprog long read
 -1 00001119 $--0B---- log sdata byte write
 0 00000000 $41------ bkpt ack (buserror) <- acknowledge
 1 0000f0de $----0010 log sdata word write
 2 0000f0da $----0000 log sdata word write
 3 0000f0dc $172E---- log sdata word write
 4 00000010 $000016A2 log sdata long read
 5 0000f0d8 $2704---- log sdata word write
 6 000016a0 $007E2F0D log sprog long read
 7 000016a4 $4BFAFA73 log sprog long read

At the end of the execution of the first target program instruction, the processor
takes a trace exception. Stacking for this trace exception commences and at some
point, the modified trace vector is fetched. The monitor internally uses a
breakpoint instruction, but it is not part of the entry sequence.

If an error occurs during modification of the trace vector, an error message similar
to the following is displayed.

!ERROR 170! Target bus error: 0ff800024@sd
!ERROR 156! Unable to modify trace vector to 000001680 for single stepping
!ERROR 680! Stepping failed

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

664

If the emulator does not reenter the monitor after stepping, as indicated by the
following error message, there can be a number of explanations. If the emulator
steps an instuction that modifies the VBR, the step will fail because the modified
trace vector will not be used to reenter the monitor. To get around this problem, the
trace vector in the target program can be modified to point to the monitor entry
point <monaddress + 0680>.

!ERROR 680! Stepping failed

Stepping will behave differently when executing instructions that cause the
processor to take exceptions. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK, and CHK2)
create their stack frame and then take the trace exception.

For all exceptions except TRAP, CHK, and CHK2, the exception handler will
execute before the trace exception is taken to return to the monitor. Exception
handlers that are instruction emulators are responsible for emulating the trace
behavior as well. If they do not emulate this behavior, stepping may fail because
the trace exception will never happen.

The TRAP, CHK, and CHK2 exception handlers do not run before the trace
exception is taken. They will have an additional stack frame when the monitor is
entered. The exception stack frame will precede the normal trace stack frame.

Installing emulation memory

The last feature of the emulator that you need to integrate is the emulation memory.
Emulation memory is intended to overlay ROM in the target system. This allows
changes to target programs to be quickly loaded into a system. Emulation memory
is not dual ported as is the case with the monitor memories. To display and modify
emulation memory, you must use the monitor.

If emulation memory is placed over existing target memory, interlock it to the
target memory strobes. This ensures that the target memory control circuits remain
in sync with the emulator. If there are no strobes that respond in the address range
where emulation memory is placed, then do not interlock. When interlocked, both
the TA and TEA signals are sampled.

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

665

!ERROR 170! Target failed to terminate bus cycle: 000000000@sd word read
!STATUS 170! Emulator terminated hung bus cycle: 000000000@sd word read
!ERROR 702! Emulation memory access failed

To effectively use emulation memory, the monitor must be able to read and write to
it. Read and write accesses to emulation memory are seen by the target system.
Emulation memory will not be able to be loaded if it is interlocked and the target
system asserts bus error on write cycles or does not terminate the cycle.

!ERROR 170! Target bus error: 0000badad@sd
!ERROR 702! Emulation memory access failed

If the memory is write-protected by the MMU, the monitor will temporarily disable
this protection to complete the write. This applies to both emulation memory and
target memory. Once emulation memory is mapped, it can be tested by performing
accesses from the monitor.

If the MMU is turned on and there are no address translations for the requested
emulation memory access, you will see the following error message:

!ERROR 170! Address translation error; non-resident page: 000f84000@sd
!ERROR 702! Emulation memory access failed

Chapter 18: Connecting the Emulator to a Target System
Installing Emulator Features

666

19

Installation and Service

667

Installation

This chapter shows you how to install emulation and analysis hardware and
interface software. It also shows you how to verify installation by starting the
emulator/analyzer interface for the first time. These installation tasks are described
in the following sections:

• Installing hardware.

• Connecting the HP 64700 to a computer or LAN.

• Installing HP 9000 software.

• Installing Sun SPARCsystem software.

• Verifying the installation.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

64700 Operating Environment The Graphical User Interface requires version
A.05.00, or later, of the 64700 Operating Environment. (The Graphical User
Interface version is A.05.10.)

Motif/OSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory (32 megabytes or
more is recommended). Series 300 workstations should have a minimum
performance equivalent to that of a HP 9000/350. A color display is also highly
recommended.

668

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphical
User Interface on HP 9000 systems.

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1.1 or greater (Solaris 1.X). At the time this
manual was printed, the Graphical User Interface software would not run on Solaris
2.X; ask your Hewlett-Packard Sales Office if the present version of Graphical User
Interface software will run on Solaris 2.X. The tape uses the QIC-24 data format.

64700 Operating Environment The Graphical User Interface requires version
A.05.00 or greater of the 64700 Operating Environment. (The minimum Graphical
User Interface version required is A.05.10.)

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory (32 megabytes or
more is recommended). A color display is also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

Chapter 19: Installation and Service
Installation

669

Installing Hardware

This section describes how to install emulation and analysis hardware and how to
connect the emulator probe to the demo target system.

Equipment supplied

The minimum system contains:

• HP 64783A/B 68040/68EC040/68LC040 PGA Emulator Probe (which
includes the demo target system).

• HP 64748C Emulation Control card.
• HP 64794 Emulation-Bus Analyzer (deep analyzer) card, or HP 64704A

Emulation-Bus Analyzer (1K analyzer) card.
• Ribbon cable.
• HP 64700 Card Cage.

Optional parts are:

• HP 64172A 256-Kbyte Memory Modules for additional memory depth.
• HP 64172B 1-Mbyte Memory Modules for additional memory depth.
• HP 64173A 4-Mbyte Memory Modules for additional memory depth.
• HP 64708A Software Performance Analyzer.

Equipment and tools needed

In order to install and use the MC68040 emulation system, you need:

• Flat-blade screwdriver with shaft at least 5 inches long (13 mm approx).

Installation overview

The steps in the installation process are:

1 Install optional memory modules on the deep analyzer card, if desired.
2 Connect the HP 64783A/B emulator probe to the HP 64748C emulator control

card.
3 Install cards into the HP 64700 card cage.
4 Install emulation memory modules on the emulator probe.
5 Connect the emulator probe to the demo target system.
6 Apply power to the HP 64700 Card Cage.

Chapter 19: Installation and Service
Installing Hardware

670

Antistatic precautions

Printed-circuit boards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator boards, follow
these guidelines:

• If possible, work at a static-free workstation.
• Handle the boards only by the edges; do not touch components or traces.
• Use a grounding wrist strap that is connected to the HP 64700’s chassis.

Caution If you already have a modular HP 64700 Series Card Cage and want to remove the
existing emulator and insert an HP 64783A/B emulator in its place, the HP 64700
Series generic firmware and analyzer firmware may NOT be compatible, and the
software will indicate incompatibility. In this event, you must purchase a Flash
EPROM board to update the firmware. Instructions for installing this board and
programming it from a PC or HP 9000 are provided in the HP 64700 Card Cage
Installation/Service manual. Instructions for installing and updating emulator
firmware are covered in Chapter 20, "Installing/Updating Emulator Firmware".

Note If you already have a modular HP 64700 Series Card Cage and want to remove the
1K analyzer and install the deep analyzer in its place, the analyzer firmware will be
updated by your installation because the analyzer firmware is contained on the
analyzer card.

Checking Hardware Installation

After hardware installation, run a performance test to verify that the emulator is
working properly. The performance verification procedure is described under
"Verifying the Installation" later in this chapter.

Service Information

Use this chapter when removing and installing hardware, running performance
verification, and ordering parts. See the HP 64700 Series Installation/Service
Guide for information on system configurations, installing product software,
software updates, and ordering parts for the card cage. Turn off power to the card
cage before removing or installing hardware.

Chapter 19: Installation and Service
Installing Hardware

671

Step 1. Install optional memory modules on Deep
Analyzer card, if desired

Observe antistatic precautions

With no optional memory modules installed on the deep analyzer card, the trace
memory depth is 8K. If you are going to use the deep analyzer with this default
trace memory depth, skip this step and proceed to Step 2 of this installation
procedure.

1 Determine placement of the optional memory modules. Two types of modules may be installed:
256-Kbyte (HP 64172A), and 1-Mbyte (HP 64172B). Either module type may be installed in the banks
on the analyzer card. Do not use HP 64171A/B or HP 64173A memory modules; they are too slow.

If you install no memory modules, the deep analyzer will have 8K maximum memory depth.
If you install four 256-Kbyte memory modules, the analyzer will have 64K maximum memory depth.
If you install four 1-Mbyte memory modules, the analyzer will have 256K maximum memory depth.

If you install a combination of 256-Kbyte memory modules and 1-Mbyte memory modules, the analyzer
will have 64K maximum memory depth. All four connectors must have memory modules installed
before the analyzer depth will be increased.

Chapter 19: Installation and Service
Installing Hardware

672

2 To ensure correct installation of optional memory modules on the deep analyzer card, there is a cutout
at one end of the memory modules so they can only be installed the correct way.

To install a memory module:

Align the groove in the memory module with the alignment rib in the connector.

Align the cutout in the memory module with the projection in the connector.

Place the memory module into the connector groove at an angle.

Firmly press the memory module into the connector and make sure it is completely seated.

Rotate the memory module forward so that the pegs on the connector fit into the holes on the memory
module.

Make sure the release tabs at each end of the connector snap around the memory module to hold it in
place.

Chapter 19: Installation and Service
Installing Hardware

673

Step 2. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64783A/B emulator probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. The
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe. The
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

Make sure the cable connectors are seated. There are stainless steel clips on the cable connectors; these
must be properly latched inside the sockets. Otherwise, the cables will work loose and you will see
erratic operation. See illustration next page (step 2).

1 Connect the emulator probe cables to the emulation control card.

Chapter 19: Installation and Service
Installing Hardware

674

2 When inserting cable connectors into the sockets, press inward on the connector clips so that they hook
into the sockets as shown. The order of connecting cables was given in step 1.

Chapter 19: Installation and Service
Installing Hardware

675

3 Connect the other ends of the cables to the emulator probe. Again, make sure the stainless steel clips
on the cable connectors are properly latched within the sockets, as shown in step 2.

Chapter 19: Installation and Service
Installing Hardware

676

Step 3. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 Card Cage on the rear panel. You could damage the
rear panel ports and connectors.

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the risk
of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700 Card Cage
is provided for this purpose.

Chapter 19: Installation and Service
Installing Hardware

677

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

Chapter 19: Installation and Service
Installing Hardware

678

3 Remove the side cover by unsnapping the two latches and lifting off.

4 Remove the card supports.

Chapter 19: Installation and Service
Installing Hardware

679

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards
by rotating the screwdriver.

Chapter 19: Installation and Service
Installing Hardware

680

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch, and
pull the right side of the bezel about one-half inch away from the front of the HP 64700. Then, do the
same thing on the left side of the bezel. When both sides are released, pull the bezel toward you
approximately 2 inches.

Be careful because the plastic ears are easily broken on the front bezel.

Chapter 19: Installation and Service
Installing Hardware

681

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

8 If you’re removing an existing analyzer card that provides external analysis, remove the right-angle
adapter board by turning the thumb screws counterclockwise.

Chapter 19: Installation and Service
Installing Hardware

682

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the analyzer
card by rotating the screwdriver.

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

Chapter 19: Installation and Service
Installing Hardware

683

10 Install the analyzer and emulation control cards. The analyzer is installed in the slot next to the
system control card. The emulation control card is installed in the second slot from the bottom of the
card cage. The software performance analyzer card may occupy any slot between the emulation-bus
analyzer and the emulation control card. These cards are identified with labels that show their model
numbers and serial numbers. Note that components on the analyzer card face the opposite direction to
the other cards.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned; then,
press the card into the mother board socket. Ensure that each card is seated all the way into its socket. If
the cards can be removed with your fingers, the cards are NOT seated all the way into the mother board
sockets.

Attach the ribbon cable from the emulation control card to the analyzer card, and to the software
performance analyzer, if installed. Tighten the thumbscrews that hold the emulation control card to the
cardcage frame.

Chapter 19: Installation and Service
Installing Hardware

684

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

Chapter 19: Installation and Service
Installing Hardware

685

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the
lip as shown below.

13 If you wish to install the Flash card (used for updating firmware, see Chapter 20

Chapter 19: Installation and Service
Installing Hardware

686

14 Install the card supports.

15 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

Chapter 19: Installation and Service
Installing Hardware

687

16 Install the top cover in reverse order of its removal, but make sure that the side panels of the top cover
are attached to the side clips on the frame.

Chapter 19: Installation and Service
Installing Hardware

688

Step 4. Install emulation memory modules on
emulator probe

(Observe antistatic precautions)

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and remove the
cover. The bottom cover is only removed when you need to replace a defective active probe on the
exchange program.

Chapter 19: Installation and Service
Installing Hardware

689

2 Determine the placement of the emulation memory modules. Three types of modules may be installed:
256 Kbyte (HP 64172A), 1 Mbyte (HP 64172B), and 4 Mbyte (HP 64173A). Any of the emulation
memory modules can be installed in either memory slot on the probe. Do not use HP 64171A/B
modules; they are too slow.

Memory in memory slot 0 is divided into four equal blocks that can be allocated by the memory mapper.
Memory in memory slot 1 is divided into two equal blocks.

If you have only one emulation memory module, place it in memory slot 0.

If you have two memory modules of different sizes, place the memory module with the greatest capacity
in memory slot 0 to take advantage of the way memory slot 0 and memory slot 1 are divided by the
emulator. For example, if you install a 1-Mbyte module in memory slot 0 and a 256-Kbyte module in
memory slot 1, then the emulator will provide four 256-Kbyte blocks of memory in memory slot 0 and
two 128-Kbyte blocks of memory in memory slot 1.

If you install any 4-Mbyte memory modules (HP 64173A) on the emulation probe, the emulator will
detect their presence and add one wait state to accesses it makes to emulation memory. The 4-Mbyte
memory modules are not as fast as the 256-Kbyte and 1-Mbyte memory modules.

Chapter 19: Installation and Service
Installing Hardware

690

3 Install emulation memory modules on the emulator probe. There is a cutout at one end of the memory
modules so they can only be installed the correct way.

To install a memory module:

1 Align the groove in the memory module with the alignment rib in the connector.
2 Align the cutout in the memory module with the projection in the connector.
3 Place the memory module into the connector groove at an angle.
4 Firmly press the memory module into the connector and make sure it is completely seated.
5 Rotate the memory module forward so that the pegs on the connector fit into the holes on the
 memory module.
6 Make sure the release tabs at each end of the connector snap around the memory module to
 hold it in place.

Chapter 19: Installation and Service
Installing Hardware

691

4 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure the cover.

Chapter 19: Installation and Service
Installing Hardware

692

Step 5. Connect the emulator probe to the demo
target system

1 With HP 64700 power OFF, connect the emulator probe to the demo target system. When you install
the probe into the demo board, be careful not to bend any of the pins. Do not insert the probe of the
MC68040 emulator into the demo board socket incorrectly. Be very careful.

Chapter 19: Installation and Service
Installing Hardware

693

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cable has
one power wire and two ground wires. When attaching the 3-wire cable to the demo target system,
make sure the connector is aligned properly so that all three pins are connected.

3 Connect the reset flying lead from the probe to the demo board

Chapter 19: Installation and Service
Installing Hardware

694

Step 6. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B will
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You should
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

Chapter 19: Installation and Service
Installing Hardware

695

Plug Type Cable Part No. Plug Description Length in/cm Color

Opt 903
124V **

8120-1378

8120-1521

Straight
 * NEMA5-15P
90o

90/228

90/228

Jade Gray

Jade Gray

Opt 900
250V

8120-1351

8120-1703

Straight
 * BS136A
90o

90/228

90/228

Gray

Mint Gray

Opt 901
250V

8120-1369

8120-0696

Straight
 * NZSS198/ASC
90o

79/200

87/221

Gray

Mint Gray

Opt 902
250V

812001689

8120-1692

8120-2857

Straight
 * CEE7-Y11
90o

Straight
(Shielded)

79/200

79/200

79/200

Mint Gray

Mint Gray

Coco
Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

Power Cord Configurations

Chapter 19: Installation and Service
Installing Hardware

696

Plug Type Cable Part No. Plug Description Length in/cm Color

Opt 906
250V

8120-2104

8120-2296

Straight
* SEV1011
1959-24507
Type 12
90o

79/20

79/200

Mint Gray

Mint Gray

Opt 912
220V

8120-2957

Straight
*DHCK107
90o

79/200

79/200

Mint Gray

Mint Gray

Opt 917
250V

8120-4600

8120-4211

Straight
SABS164
90o

79/200

79/200

Jade Gray

Opt 918
100V

8120-4753

8120-4754

Straight Miti

90o

90/230

90/230

Dark Gray

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

Power Cord Configurations (Cont’d)

Chapter 19: Installation and Service
Installing Hardware

697

1 Connect the power cord and turn on the HP 64700.

The line switch is a pushbutton located at the lower, left-hand corner of the front panel. To turn ON
power to the HP 64700, push the line switch pushbutton in to the ON (1) position. The power light at the
lower, right-hand corner of the front panel will be illuminated.

Chapter 19: Installation and Service
Installing Hardware

698

Connecting the HP 64700 to a Computer or LAN

Refer to the HP 64700 Series Installation/Service Guide for instructions on
connecting the HP 64700 to a host computer (via RS-422 or RS-232) or LAN and
setting the HP 64700’s configuration switches. (RS-422 and RS-232 are only
supported on HP 9000 Series 300/400 machines.)

Chapter 19: Installation and Service
Connecting the HP 64700 to a Computer or LAN

699

Installing HP 9000 Software

This section shows you how to install the Graphical User Interface on HP 9000
workstations. Installation involves installing the interface and the 64700 Operating
Environment. These instructions also tell you how to prevent installation of the
Graphical User Interface if you want to use only the Softkey Interface.

This section shows you how to:

1 Install the software from the media.

2 Verify the software installation.

3 Start the X server and the Motif Window Manager (mwm), or start HP VUE.

4 Set the necessary environment variables.

Step 1. Install the software from the media

During the installation process, you may make some choices about how much of
the product software to load from the product media. As a general rule, you should
load everything from the media because that ensures that you will not miss filesets
and therefore have problems with the operation of the software. However, you may
not need or want to install certain partitions or filesets from the product media
when installing the Graphical User Interface. There are at least two reasons why
that is so.

• If you were shipped the HP 64801 64000-UX Operating Environment instead
of the HP B1471 64700 Operating Environment, you were shipped files that
are not necessary to the operation of HP 64700 Series interface products. As of
this writing, excluding these files will save you about 4.5 megabytes of disk
space.

• You may not have the system performance necessary, or you may choose, for
some other reason, not to use the Graphical User Interface and instead use the
Softkey Interface. If that is the case, you should exclude the filesets that
contain the Graphical User Interface because:

– As of this writing, you will save about 3.5 megabytes of disk space.

Chapter 19: Installation and Service
Installing HP 9000 Software

700

– If you are using X Windows, the Graphical User Interface is the
default interface. If you load the Graphical Interface, but do not use it,
you will have to manually override it each time you begin an
emulation session.

The following sub-steps assume that you may want to exclude partitions or filesets.
Perform the following sub-steps to load the software on your system:

1 Become the root user on the system you want to update.

2 Make sure the tape’s write-protect screw points to SAFE.

3 Put the product media into the tape drive that will be the source device for the
update process.

4 Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

5 When the BUSY light goes off and stays off, start the update program by entering

/etc/update

at the HP-UX prompt.

6 When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to your HP-UX System
Administrator documentation if you need to modify these values.

7 Select the choice on the update menu that allows you to view the product partitions.

8 If you see the partition named 64801 and described as "64000-UX Operating
Environment", then you have the HP 64801 product. In this case, mark the 64801
partition with "n" to prevent loading this partition. Do this only if you have 64700
Series emulators and do not use "meas-sys".

Chapter 19: Installation and Service
Installing HP 9000 Software

701

9 Except for the emulator-specific partition and the 64700 Operating Environment
partition, mark all other partitions with "y" to confirm that you want these partitions
loaded. (Do not mark 64801 with "y" if you marked it with "n" in the last step.)

The emulator-specific partition will be named something like "<processor>
Emulation Tools" where "<processor>" is the processor supported by the emulator.

10 If you plan to install and use the Graphical User Interface, do the following:

• Mark the emulator-specific partition and the 64700 Operating Environment
partition with "y" to confirm the installation of these partitions.

• Skip to sub-step 12 of these instructions.

11 If you do not want to install the Graphical User Interface, do the following:

• View the filesets for the 64700 Operating Environment.

• Mark the fileset 64700XUI with "n" to exclude it from installation.

• Mark all other filesets in the partition with "y" to confirm installation.

• Return to the partition screen.

• View the filesets in the emulator-specific partition (named something like
<processor-type> Emulation Tools).

• Mark the fileset 647xxXUI with "n" to exclude it from installation.

• Mark all other filesets in the partition with "y" to confirm installation.

• Return to the partition screen.

12 From the partition screen, choose the update utility softkey that starts the
installation process.

Chapter 19: Installation and Service
Installing HP 9000 Software

702

Step 2. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the installation process.

1 Verify the existence of the HP64_Softkey file in the /usr/lib/X11/app-defaults
subdirectory by entering
ls /usr/lib/X11/app-defaults/HP64_Softkey at the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

2 Examine /usr/lib/X11/app-defaults/HP64_Softkey near the end of the file to
confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, because you installed the Graphical User Interface
for the 68040 emulator, resource name strings will have m68040 embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to
run the Motif Window Manager (mwm), or similar window manager, continue with
Step 3a of these instructions. If you plan to run HP VUE, skip to Step 3b of these
instructions.

Chapter 19: Installation and Service
Installing HP 9000 Software

703

Step 3a. Start the X server and the Motif Window
Manager (mwm)

If you are not already running the X server and a window manager, do so now. The
X server is required to use the Graphical User Interface because it is an X Windows
application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

• Start the X server by entering x11start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.
Chapter 13, "Using X Resources", also discusses X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 4 of
these instructions.

Step 3b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

HP VUE differs slightly from other window managers in that it does not read your
.Xdefaults file to find resources you may want to customize. Instead, it uses
resources from the X resource database. In order to customize resources for the
Graphical User Interface under HP VUE therefore, you must either merge a file of
customized resources with the X resource database, or set an environment variable
that causes the X resource manager to read a file of customized resources. For ease
of use, choose the .Xdefaults file as your merge file.

• To merge the file .Xdefaults with the X resource database, enter

Chapter 19: Installation and Service
Installing HP 9000 Software

704

xrdb -merge .Xdefaults

 at the HP-UX prompt.

Customized resources will be merged with the X resource database and will be
available for retrieval by the Graphical User Interface.

• To enable the Graphical User Interface to find the .Xdefaults file directly, enter the
following commands:

XENVIRONMENT=$HOME/.Xdefaults

export XENVIRONMENT

The Graphical User Interface will be able to find and read the file in order to
retrieve customized resources.

Step 4. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you’re using "sh" or "ksh"; if you’re using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

1 Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server_number>.<screen_number>
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Chapter 19: Installation and Service
Installing HP 9000 Software

705

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

2 Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
"/", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr/hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

ln -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

HP64000=/users/team/usr/hp64000; export HP64000

3 Set the PATH environment variable to include the usr/hp64000/bin directory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Including usr/hp64000/bin in your PATH relieves you from prefixing HP 64700
executables with the directory path.

4 Set the MANPATH environment variable to include the usr/hp64000/man and
usr/hp64000/contrib/man directories by entering

MANPATH=$MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

Chapter 19: Installation and Service
Installing HP 9000 Software

706

Installing Sun SPARCsystem Software

This section shows you how to install the Graphical User Interface on Sun
SPARCsystem workstations. Installation involves installing the interface and the
64700 Operating Environment. These instructions also tell you how to prevent
installation of the Graphical User Interface if you want to use only the Softkey
Interface.

This section shows you how to:

1 Install the software from the media.

2 Start the X server and OpenWindows.

3 Set the necessary environment variables.

4 Verify the software installation.

5 Map your function keys.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.
However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan to use the Softkey Interface instead of the Graphical User Interface, you
can save about 3.5 megabytes of disk space by not installing the filesets suffixed
"XUI". (Also, if you choose not to install the Graphical User Interface, you will
not have to use a special command line option to start the Softkey Interface.)

Refer to the Software Installation Notice for software installation instructions.
After you are done installing the software, return here.

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

707

Step 2. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is required to
run the Graphical User Interface because it is an X application.

• Start the X server by entering /usr/openwin/bin/openwin at the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 3. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you’re using "csh"; if you’re using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

1 The DISPLAY environment variable is usually set by the openwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY

If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

708

For example:

setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

2 Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
"/", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr/hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

ln -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used
by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

3 Set the PATH environment variable to include the usr/hp64000/bin directory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Including usr/hp64000/bin in your PATH relieves you from prefixing HP 64700
executables with the directory path.

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

709

4 Set the MANPATH environment variable to include the usr/hp64000/man and
usr/hp64000/contrib/man directories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}:${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

5 If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/openwin/lib

Step 4. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand-alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

• Run the script $HP64000/bin/envinstall.

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

710

Step 5. Map your function keys

If you are using the Softkey Interface, map your function keys by following the
steps below.

1 Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your $HOME directory.

2 Remove or comment out the following line from your .xinitrc file:

xmodmap -e ’keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

3 Add the following to your .profile or .login file:

stty erase ^H
setenv KEYMAP sun
TERMINFO=/usr/hp64000/lib/terminfo
export TERMINFO

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:
setenv OPENWINHOME /usr/openwin

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

711

After you have mapped your function keys, you must start the X server and an X
window manager (if you are not currently running an X server).

Step 6. Restart the window system

1 Exit the window system you are using.

• If you are using SunView windows, use the Exit SunView menu item.

• If you are using Open Windows, use the Exit item in the Workspace menu.

2 Start your window system again.

• To restart SunView windows, type: sunview

• To restart Open Windows windows, type: openwin

The new function key settings are now active

Step 7. Run the interface in a window

Here are two ways to start the interface:

• In an OpenWindows or SunView shelltool window, type:

emul700 <logical_name>

• If you are running OpenWindows, you can use the installed script to open an
xterm window:

$ /usr/hp64000/bin/hp64term

Then in the new window, type:

$ emul700 <logical_name>

Chapter 19: Installation and Service
Installing Sun SPARCsystem Software

712

Verifying the Installation

This section shows you how to:

• Determine the logical name of your emulator.

• Start the emulator/analyzer interface for the first time.

• Step through the demo by using the action keys.

• Exit the emulator/analyzer interface.

• Run performance verification.

Step 1. Determine the logical name of your
emulator

The logical name of an emulator is a label associated with a set of communications
parameters in the $HP64000/etc/64700tab.net file. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.net at the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for a 68040 emulator connected to the LAN would appear as
follows:

#---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#---
 lan: em68040 m68040 21.17.9.143

Chapter 19: Installation and Service
Verifying the Installation

713

A typical entry for a 68040 emulator connected to an RS-422 port would appear as
follows:

#---
| | | | |Xpar|Parity|Flow|Stop|Char
Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type | Name | Device | | |XON | |
| | | | |OFF | NONE |RTS | 2 | 8
#---
 serial: em68040 m68040 myhost /dev/emcom23 OFF NONE RTS 2 8

Step 2. Start the interface with the emul700
command

The emul700 software is part of the HP 64700 Operating Environment software
you installed during the update process.

1 Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

2 Wait a few seconds to allow the emulator to complete its startup initialization.

3 Choose a terminal window from which to start the Graphical User Interface.

Chapter 19: Installation and Service
Verifying the Installation

714

4 Start the Graphical User Interface by entering the emul700 command and giving
the logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/bin is in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, the emul700 command will start the
Graphical User Interface. Otherwise, emul700 starts the Softkey Interface.

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing this frees the terminal window
where you started the interface so that the window may still be used.

5 Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the Softkey Interface under X Windows, but you must
include a command line argument to emul700 to override the default Graphical
User Interface. Start the Softkey Interface by entering

emul700 -u skemul <logical name>.

Example Suppose you have discovered that the logical name for a 68040 emulator connected
to the LAN is "m68040". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bin)

emul700 m68040

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

Chapter 19: Installation and Service
Verifying the Installation

715

Chapter 19: Installation and Service
Verifying the Installation

716

Step 3. Step through the demo with the Action
Keys

Action keys are unique to the Graphical User Interface. When you first install and
start the interface, a set of default Action Keys will be present. These Action Keys
will let you load and start the emulator and run the demo program supplied with the
interface. Doing so will help you familiarize yourself with the Graphical User
Interface.

• Click on the <Demo> Action Key. A window of instructions will appear, telling
you how to set up and run the demo program. Step through the demo program by
clicking the Action Keys from left to right and top to bottom.

After you have seen some of the capabilities by stepping through the demo, try the
various menus, work with the command line, and read some on-line help topics.
What you do is not important; it is important to begin getting comfortable with the
interface.

Step 4. Exit the Graphical User Interface

After you have experimented with the interface, you can exit the session, or
continue on to the next chapters and try some of the commands given. The
following chapters give you instructions for performing various tasks with the
interface, and so you do not have to work through them from front to back. Skip
around to topics that interest you.

If, instead, you want to exit the interface now, do the following:

1 Position the mouse pointer over the pulldown menu named "File" on the menu bar
at the top of the interface screen.

2 Press and hold the command select mouse button until the File menu appears.

3 While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Chapter 19: Installation and Service
Verifying the Installation

717

4 Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

5 Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

Step 5. Verify the performance of the emulator

1 If you have a special configuration or session in progress, save it now. This
procedure will cause your session to be lost.

2 Turn off power to the HP 64700 Card Cage.

3 Plug the emulator probe into the Demo Board if it is not already there.

4 Connect Demo Board power cable from the Demo Board to the HP 64700
Card Cage front panel. (See the diagrams under "Installing Hardware" in this
chapter.)

5 Connect the Reset Flying Lead from the Emulation Probe to the Demo Board. (See
"Step 4. Connect the emulator probe to the demo target system".)

6 Turn on power to the HP 64700 Card Cage.

7 Establish communication with the emulator from your host, and use the Softkey
User Interface or Graphical User Interface.

8 On the command line, enter: display pod_command

9 On the command line, enter: pod_command "pv 1"

Don’t be alarmed if you notice an error message, such as: "I/O error; power down
detected." If using the Graphical User Interface, the message, "Fatal System Error
End Release System?" will also appear. These are normal conditions. The

Chapter 19: Installation and Service
Verifying the Installation

718

performance verification tests will be complete, and you can read the results of the
tests on screen.

Here’s what caused the fatal error. To check the emulator status, your interface
constantly polls the emulator in the card cage. The last step in the performance
verification procedure reinitializes the card cage with the power down option.
During initialization, the card cage is unable to communicate with your interface.
When the polling signals of the interface are unanswered, the interface assumes
communication has been lost between it and the card cage. Then the interface
reports the fatal error, but no harm has been done. You must "end_release_system"
in the Softkey User Interface, or click on OK in the Fatal System Error box in the
Graphical User Interface.

If you are using a LAN, there is another way to run performance verification
without the loss of communication between the interface and the emulator
hardware. It uses the telnet capability and the Terminal Interface:

1 From your host computer, enter the command: telnet <emulator_name>.

2 Now enter the command: pv 1

3 When your performance verification test is complete, use the keyboard
<CTRL>d keys to end the emulation session.

Examples Start the performance verification test routines from the Softkey User Interface with
the commands:

display pod_command

pod_command "pv <N>"

where <N> is an integer that specifies the number of times to run the set of
performance verification tests. It is sometimes necessary to enter the pod command
tcf -e before running performance verification.

A message similar to the following should appear:
Testing: HP64783 Motorola 68040 Emulator
 PASSED:
 Number of tests: 1 Number of failures: 0
Testing: HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer
 PASSED:
 Number of tests: 1 Number of failures: 0

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior

Chapter 19: Installation and Service
Verifying the Installation

719

written permission is prohibited, except as allowed under copyright
laws.

 HP64700B Series Emulation System
 Version: B.01.00 20Dec93
 Location: Flash
 System RAM:1 Mbyte

 HP64783 Motorola 68040 Emulator
 HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer

If you have an emulation failure, you can replace the assembly that failed through
your local Hewlett-Packard representative, and through the
Support Materials Organization (SMO). Refer to the list of replacable parts at the
end of this chapter.

To verify installation of memory modules in the deep analyzer card or in the
emulation probe, choose Settings→Pod Command Keyboard, and on the
command line, type: ver.
HP64783 Motorola 68040 Emulator
 Version: A.04.00 22Oct92
 Control: HP64748C ABG Control Board
 Speed: 33 MHz
 Memory: 260 Kbytes
 Bank 0: HP64172A (20ns) 256 Kbyte Memory Module

 HP64740 compatible (PPN: 64794A) Deep Emulation Analyzer
 Version: A.03.00 25Jun93 Unreleased
 PC Board: 794-01-A1
 Depth: 80ch X 1K states selected, 80ch x 64K states available
 Bank 0: HP64172A (20ns) 256 Kbyte Module
 Bank 1: HP64172A (20ns) 256 Kbyte Module
 Bank 2: HP64172A (20ns) 256 Kbyte Module
 Bank 3: HP64172A (20ns) 256 Kbyte Module

What is pv doing to the Emulator?

The performance verification procedures provide a thorough check of the
functionality of all of the products installed in the HP 64700 Card Cage. The Test
Suite for the HP 64783A/B Emulator consists of the following modules.
Tests available in Emulator Subsystem:
 test # 1 (ABG68000 RAM)
 test # 2 (ABG Type Map)
 test # 3 (ABGDeMMU Map)
 test # 4 (low DMMU RAM)
 test # 5 (up DMMURAM)
 test # 6 (68000 side RAM)
 test # 7 (Host DPRAM)
 test # 8 (Clock Test)
 test # 9 (Release tobg)
 test #10 (Release to fg)
 test #11 (MonTransistion)
 test #12 (Break Detection)

Chapter 19: Installation and Service
Verifying the Installation

720

 test #13(Dual Port RAM)
 test #14 (Emul Mem Bank 0)
 test #15(Emul Mem Bank 1)
 test #16 (Demo Reset)
 test #17(Demo Data)
 test #18 (Demo Address)
 test #19 (DemoStatus)
 test #20 (Demo IPL)
 test #21 (Demo Cache)
 test #22 (Demo DMA)
 test #23 (Demo MDIS)
 test #24(Demo LED)
 test #25 (Analysis Intrfc)
 test #26(DeMMUer)
 test #27 (CMB)

Troubleshooting

The test results for all of these modules are indicated by a simple PASS/FAIL
message. The PASS message gives a high level of confidence that all major
functions and signals are operating because it includes a loopback test that includes
read and write tests to the demo board. The demo board also stimulates inputs to
the emulator.

A FAIL message on the other hand indicates that one or more of the tested
functions is NOT working. In this event, an HP field representative can either swap
assemblies to isolate the failure to an individual board, or replace all the major
assemblies shown in the replaceable parts list. The emulation memory modules and
plastic cover are not part of the probe assembly. The emulation memory modules
must be ordered separately and the plastic covers should be removed from the
probe assembly before replacing the probe assembly.

Chapter 19: Installation and Service
Verifying the Installation

721

Parts List

What is an Exchange Part?

Exchange parts are shown on the parts list. A defective part can be returned to HP
for repair in exchange for a rebuilt part.

Probe (exchange)

The Probe for the HP 64783A is not interchangable with the Probe for the
HP 64783B. Make sure you order the Probe replacement part number that is
compatible with your emulator.

To replace the Probe on the exchange program, you must remove certain parts, and
return only that part considered an exchange part. When returning the Probe, you
must remove the:

• cable assembly.
• top and bottom plastic covers.
• SRAM modules.
• demo board.

Emulation Control Card (exchange)

To replace the Emulation Control Card on the exchange program, you must remove
certain parts, and return only that part considered an exchange part. When
returning the Emulation Control Card, you must remove the:

• ribbon cable that connects the Emulation Control Card to the analyzer card.
• cable assembly.
• egress panel.

Chapter 19: Installation and Service
Parts List

722

Main Assembly

Component Part New Exchange

HP 64783A/B Probe and Demo Board

68040 Emulator Firmware Floppy
64700 SW UTIL
MC68040 Probe Board for HP 64783A
MC68040 Probe Board for HP 64783B
 (Order the following parts separately:)
 Top Plastic Cover
 Bottom Plastic Cover
 Plastic Rivets Kit (rivets and washers)
 Reset Flying Lead
HP 64783A Demo Board for HP 64783A/B
 (Order the following part separately:)
 External Power Cable

64783-18000
64700-18006
64783-66504
64783-66505

64783-04101
64783-04102
64748-68700
64762-61602
64783-66502

5181-0201

64783-69504
64783-69505

HP 64748C Emulation Control Card Subassembly

Egress Panel
Bracket (used with Egress Panel)
Spacer, Hex M3X6
Screw, Machine M3X8
Cable-100 36"
Cable-100 37"
Cable-100 38"
Cable Clamp
Rubber Strip
Emulation Control Card
 (without external cable or egress panel)
Wrist strap

64748-00205
64748-01201
0515-1146
0515-0372
64748-61601
64748-61602
64748-61603
64744-01201
64744-81001
64748-66515

9300-1405

64748-69515

HP 64172A 256 Kbyte SRAM Module 64172A 64172-69501

HP 64172B 1 Mbyte SRAM Module 64172B 64172-69502

HP 64173A 4 Mbyte SRAM Module 64173A 64173-69501

Chapter 19: Installation and Service
Parts List

723

Main Assembly

Component Part New Exchange

HP 64794A Emulation-Bus Analyzer (deep) card 64794-66502 64794-69502

34-pin ribbon cable 64708-61601

Analyzer Card HP 64740 with 1K memory depth 64740-66526 64740-69526

34-pin ribbon cable 64772-61602

Chapter 19: Installation and Service
Parts List

724

20

Installing/Updating Emulator
Firmware

725

Installing/Updating Emulator Firmware

If you ordered the HP 64783A/B MC68040 emulator probe and the HP 64748C
emulation control card together, the control card contains the correct firmware for
the emulator.

However, if you ordered the emulator probe and the HP 64748C separately, or if
you are using an HP 64748C that has been used previously with a different
emulator probe, you must download the correct firmware into the emulation control
card.

The 68040 emulator firmware is included with the emulator/analyzer interface
software, and the program that downloads emulator firmware is included with the
HP B1471 64700 Operating Environment product.

(The firmware, and the program that downloads it into the control card, are also
included with the 68040 emulator probe on MS-DOS format floppies. The floppies
are for users who do not have hosted interface software.)

Before you can update emulator firmware, you must have already installed the
emulator into the HP 64700, connected the HP 64700 to a host computer or LAN,
and installed the emulator/analyzer interface and HP B1471 software as described
in Chapter 19, "Installation and Service".

This chapter shows you how to:

• Update firmware with the "progflash" command.

• Display current firmware version information.

Chapter 20: Installing/Updating Emulator Firmware

726

To update emulator firmware with "progflash"

• Enter the progflash -v <emul_name> <products ...> command.

The progflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -v option (verbose) causes progress status messages to be displayed during
operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file, such as m68040.

The <products> option names the products whose firmware is to be updated, such
as 64783.

If you enter the progflash command without options, the downloading process
becomes interactive. If you don’t include the <emul_name> option, your computer
displays the logical names in the /usr/hp64000/etc/64700tab.net file and asks you to
choose one. If you don’t include the <products> option, your computer displays
the products that have firmware update files on the system and asks you to choose
one. (In the interactive mode, only one product at a time can be updated.) You can
abort the interactive progflash command by pressing <CTRL>c.

progflash will print "Flash programming SUCCEEDED" and return 0 if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

Chapter 20: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

727

Examples To update the HP 64783 firmware in the HP 64700 that contains the "em68040"
emulator:

$ progflash

 HPB1471-19309 A.05.00 03Jan94
 64700 SERIES EMULATION COMMON FILES

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1988

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

 Logical Name Processor
 1 em68k m68000
 2 em80960 i80960
 3 m68040 m68040

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that contains the 68040 emulator, enter "3".

 Product
 1 64700
 2 64703/64704/64706/64740
 3 64744
 4 64760
 5 64783

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64783 68040 emulator firmware, enter "5".
Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

Chapter 20: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

728

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from ’/usr/hp64000/inst/update/64783.cfg’
ROM identifier address = 2FFFF0H
Required hardware identifier = 1FFFH,1FFCH
Control ROM start address = 280000H
Control ROM size = 40000H
Control ROM width = 16
Programming voltage control address = 2FFFFEH
Programming voltage control value = FFFFH
Programming voltage control mask = 0H

Rebooting HP64700...
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: /usr/hp64000/inst/update/64783.X
 Code start 280000H (should equal control ROM start)
 Code size 29A3EH (must be less than control ROM size)
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
$

You could perform the same update as in the previous example with the following
command:

$ progflash -v m68040 64783

Chapter 20: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

729

To display current firmware version information

• Use the Terminal Interface ver command to view the version information for
firmware currently in the HP 64700.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with the pod_command command. For example:

display pod_command
pod_command "ver"

Examples The Terminal Interface ver command displays information similar to:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700B Series Emulation System
 Version: B.01.00 20Dec93
 Location: Flash
 System RAM:1 Mbyte

 HP64783 Motorola 68040 Emulator
 Version: A.01.00 28Jan93
 Control: HP64748C Emulation Control Board
 Speed: 40 MHz
 Memory: 260 Kbytes
 Bank 0: HP64172A (20ns) 256 Kbyte Memory Module

 HP64740 Emulation Analyzer
 Version: A.02.02 13Mar91

Chapter 20: Installing/Updating Emulator Firmware
To display current firmware version information

730

If there is a power failure during a firmware
update

If there is a power glitch during a firmware update, some bits may be lost during
the download process, possibly resulting in an HP 64700 that will not boot up.

Repeat the firmware update process.

If the HP 64700 is connected to the LAN in this situation and you are unable to
connect to the HP 64700 after the power glitch, try repeating the firmware update
with the HP 64700 connected to an RS-232 or RS-422 interface.

Chapter 20: Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

731

732

Glossary

Absolute Count

in the trace list count column, an absolute count indicates the total
count accumulated between the displayed state and the trigger state.
For example, an absolute time count shown beside trace memory line
number 100 indicates the elapsed time between capture of the trigger
state and capture of state 100.

Absolute File

a file consisting of machine-readable instructions in which absolute
addresses are used to store instructions, data, or both. These are the
files that are generated by the compiler/assembler/linker and are loaded
into HP 64700 Series emulators.

Access Breakpoint

a break from execution of your target program to execution of the
emulation monitor when the emulator detects an access violation, such
as an attempt to write to ROM or guarded memory space. The same
effect can be obtained for an emulation break due to trigger recognition
within the emulation-bus analyzer, or due to a signal from an external
device supplied over the CMBT or the rear-panel BNC. Access
breakpoints do not obtain immediate transfer to the monitor program.
Several instruction cycles may be executed after the access violation
occurs before execution begins in the monitor. Refer to Chapter 4,
"Using the Emulator", for details of how to use breakpoints, and effects
of their use on execution of your target program. Also, refer to
Execution Breakpoints in this glossary.

733

Analyzer

an instrument that captures activity of signals synchronously with a
clock signal. An emulation-bus analyzer captures emulator bus cycle
information. An external analyzer captures activity on signals external
to the emulator. No external analyzer is supported by the MC68040
emulators because all analysis bits are used by the emulation-bus
analyzer.

Analyzer Clock Speed

the bus cycle rate of the emulation processor. If the emulation
processor is running at 21 MHz and the fastest bus cycle requires 3
clocks, then the analyzer clock speed (bus cycle rate) is 21/3 = 7 MHz.

Applications

are composed of a hierarchy of widgets.

Arm Condition

a condition that reflects the state of a signal external to the analyzer.
The arm condition can be used in branch or storage qualifiers. External
signals can be from another analyzer or an instrument connected to the
CMB or BNC.

Assembler

a program that translates symbolic instructions into object code.

Background

a memory that parallels (and overlaps) the emulation processor’s
normal address range. Entry to background can only take place under
emulator control, and cannot be reached via your target program.

Glossary
Analyzer

734

Background Monitor

a monitor program that operates entirely in the background address
space. The background monitor can execute when target program
execution is temporarily suspended. The background monitor does not
occupy any of the address space that is available to your target program.

BNC Connector

a connector that provides a means for the emulator to drive/receive a
trigger signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

Breakpoint

a point at which emulator execution breaks from the target program and
begins executing in the monitor. (See also Execution Breakpoint and
Access Breakpoint.)

Class names

names that may apply to many instances of a widget.

Command File

a file containing a sequence of commands to be executed.

Compatible Mode

configures the deep analyzer to provide the same memory depth as the
1K analyzer: 1024 states deep when the analyzer is not configured to
make a count of states or time during a measurement, and 512 states
deep when the analyzer is configured to make a count of states or time
during a measurement. If the emulator interface you are using along
with the deep analyzer requires that you use the compatible mode, the
deep analyzer will still be able to provide one of its benefits for your
measurement; you will be able to make your counts of states or time at
full emulator clock speed.

Glossary
Background Monitor

735

Compiler

a program that translates high-level language source code into object
code, or produces an assembly language program with subsequent
translation into object code by an assembler. Compilers typically
generate a program listing which may list errors displayed during the
translation process.

Configuration File

a file in which configuration information is stored. Typically,
configuration files can be modified and re-loaded to configure
instruments (such as an emulator) or programs (such as the PC
Interface).

Coordinated Measurement

a synchronized measurement made between the emulator and analyzer,
between emulation-bus analyzer and external analyzer, or between
multiple emulators or analyzers. For example, a coordinated
measurement is made when two or more HP 64700 emulators/analyzers
start executing together, or break into background monitors at the same
time.

Coordinated Measurement Bus (CMB)

the bus that is used for communication between multiple HP 64700
Series emulators/analyzers or between HP 64700 emulators/analyzers
and an HP 64306 IMB/CMB Interface to allow coordinated
measurements.

Counter Overflow

when the trace tag counter of the deep analyzer reaches maximum
count and begins a new count from zero. The counter in the deep
analyzer simply counts continuously once a trace begins; it increments
its count every 20 ns, and reaches maximum count in about 22.9
minutes (22 minutes and 54 seconds). The deep analyzer sets a flag in
memory and stores it along with the first state that is captured after the
counter overflow occurs (first state captured after the counter begins
again at zero).

Glossary
Compiler

736

Cross-Trigger

the situation in which the trigger condition of one analyzer is used to
trigger another analyzer. Two signals internal to the HP 64700 can be
connected through the BNC on the instrumentation card cage to allow
cross-triggering between the emulation-bus analyzer and other
analyzers.

DCE (Data Communications Equipment)

a specific RS-232C hardware interface configuration. Typically, DCE
is a modem.

Deep Analyzer

in this manual, "deep analyzer" refers to the HP 64794 Emulation-Bus
Analyzer with deep trace memory.

Downloading

the process of transferring absolute files from a host computer into the
emulator.

DTE (Data Terminal Equipment)

a specific RS-232C hardware interface configuration. Typically, DTE
is a terminal or printer.

Emulation-bus Analyzer

a system component built into the HP 64700 that captures the
emulation processor’s address, data, and status information.

Emulation Memory

high-speed memory (RAM) in the emulator that can be used in place of
target system memory.

Glossary
Cross-Trigger

737

Emulator

a tool that replaces the processor in your target system. The goal of the
emulator is to operate just like the processor it replaces. The emulator
gives information about the bus cycle operation of the processor and
control over target system execution. Using the emulator, you may
view contents of processor registers, target system memory, and I/O
resources.

Emulator Probe

the assembly that connects the emulator to the target system
microprocessor socket.

Execution Breakpoint

a BKPT instruction placed in your software in RAM, replacing the
normal instruction at the RAM address. Breakpoints for code in ROM
are stored in emulation hardware and jammed on the emulation bus
during the fetch cycle. When the BKPT is executed, emulation
immediately transfers from execution of your target program to
execution of the emulation monitor. Refer to Chapter 4, "Using the
Emulator", for details of how to use execution breakpoints, and effects
of their use on execution of your target program. Also, refer to Access
Breakpoints in this glossary.

Foreground

the directly addressable memory range of the emulation processor.

Glossary
Emulator

738

Foreground Monitor

a monitor program that executes in the foreground address space. When
the monitor exists in foreground, it is directly accessible by, and can
interact with, your target program.

Guarded Memory

an address range that is to be inaccessible to the emulation processor.
The emulator will generate a break and display an error message if an
access to guarded memory occurs.

Handshaking

a process that involves receiving and sending control characters which
indicate a device is ready to receive data, that data has been sent, and
that data has been accepted.

Host Computer

a computer to which an HP 64700 Series emulator can be connected. A
host computer may run interface programs which control the emulator.
Host computers may also be used to develop programs to be
downloaded into the emulator.

Instance Name

the name of a single, unique widget.

Inverse Assembler

a program that translates absolute code into assembly language
mnemonics.

Linker

a program that combines relocatable object modules into an absolute
file which can be loaded into the emulator and executed.

Glossary
Foreground Monitor

739

Logical Address Space

the addresses assigned to code during the process of compiling,
assembling and linking to generate absolute files. Refer to Chapter 10,
"Using MC68030 Memory Management", for a detailed explanation.

Macros

custom made commands that represent a sequence of other commands.
Entire sequences of commands defined in macros will be automatically
executed when you enter the macro name. Macro nesting is permitted;
this allows a macro definition to contain other macros.

Memory Mapper Term

a number assigned to a specific address range in the memory map.
Term numbers are consecutive.

Memory Mapping

defining ranges of the processor address space as emulation RAM or
ROM, target RAM or ROM, or guarded memory.

Monitor Program

a program executed by the emulation processor that allows the
emulation system controller to access system resources. For example,
when you enter a command that requires access to your system
resources, the system controller writes a command code to a storage
area and breaks the execution of the emulation processor from your
target program into the monitor. The monitor program then reads the
command from the storage area and executes the processor instructions
that access the target system. After the system resources have been
accessed, execution returns to your target program.

Operating System

software which controls the execution of computer programs and the
flow of data to and from peripheral devices.

Overflow

see counter overflow.

Glossary
Logical Address Space

740

Parity Setting

the configuration of the parity switches. Depending on the
configuration of the parity output switch and the parity switch, a parity
check bit is added to the end of data to make the sum of the total bits
either even or odd. A parity check is performed after data has been
transferred, and is accomplished by testing a unit of the data for either
odd or even parity to determine whether an error has occurred in
reading, writing, or transmitting the data.

Path

also referred to as a directory (for example \users\projects).

PC Interface

a program that runs on the HP Vectra and IMB PC/AT compatible
computers. This is a friendly interface used to operate an HP 64700
Series emulator.

Performance Verification

a program that tests the emulator to determine whether the emulation
and analysis hardware is functioning properly.

Physical Address Space

the address space in hardware memory and hardware I/O that is
accessed by the microprocessor during normal program execution.
Refer to Chapter 9, "Solving Problems", for a detailed explanation.

Prefetch

the ability of a microprocessor to fetch additional opcodes and
operands before the current instruction is finished executing.

Prestore

the storage of states captured by the analyzer that precede states which
are normally stored. If the normal storage qualifier specifies the entry
address of a function or routine, prestore can be used to identify the
callers of that function or routine.

Glossary
Parity Setting

741

Prestore Qualifier

a specification that must be met by a state before it can be saved in the
analyzer prestore memory.

Qualifier

a specification that must be met before an action can be taken by the
analyzer. For example, a store qualifier is a specification that must be
met by an incoming state before it can be stored in the trace memory.
The "arm" condition can be used as an additional qualifier. For
example, an external analyzer may be set up to supply a true signal to
the rear panel BNC connector on the card cage when it detects a true
condition in the target system. Then the analyzer can be set up to store
qualify a certain kind of state, but only when the arm signal from the
BNC is true.

Real-Time Execution

refers to the emulator configuration in which commands that
temporarily interrupt target program execution (for example,
display/modify target memory or processor registers) are not allowed.

Relative Count

in the trace list count column, a relative count shows the count between
the present displayed state and the state displayed immediately before
it. Relative time count, for example, shows the elapsed time between
the previous displayed state and the present state. Note that the count is
between displayed states. If your trace list is inverse assembled and/or
dequeued, several states may have been captured in memory between
the present displayed state and the displayed state immediately before it.

Glossary
Prestore Qualifier

742

Remote Configuration

the configuration in which an HP 64700 Series emulator is directly
connected to a host computer via a single port. Commands are entered
(typically from an interface program running on the host computer) and
absolute code is downloaded into the emulator through that single port.

RS-232C

a standard serial interface used to connect computers and peripherals.

Sequencer

a state machine in the analyzer that searches for execution of states in a
particular order.

Single-step

the execution of one microprocessor instruction. Single-stepping the
emulator allows you to view program execution one instruction at a
time.

Softkey Interface

the host computer interface program used in the UNIX environment.
The Softkey Interface is a friendly interface used to control HP 64700
emulators.

Software Breakpoint

refer to execution breakpoint and access breakpoint in this glossary.

Software Performance Analyzer

an analyzer that measures execution of software modules, interaction
between software modules, and usage of data points and I/O ports.

Glossary
Remote Configuration

743

Standalone Configuration

the configuration in which a data terminal is used to control the HP
64700 Series emulator, and the emulator is not connected to a host
computer.

stderr

an abbreviation for “standard error output.” Standard error can be
directed to various output devices connected to the HP 64700 ports.

stdin

an abbreviation for “standard input.” Standard input is typically defined
as your computer keyboard.

stdout

an abbreviation for “standard output.” Standard output can be directed
to various output devices connected to the HP 64700 ports.

Step

see Single-step.

Store Qualifier

a specification that must be met by a state before it can be saved in the
analyzer trace memory.

Synchronous Execution

the execution of multiple HP 64700 Series emulators/analyzers at the
same time (i.e., multiple emulator start/stop).

Syntax

the order in which expressions are structured in command languages.
Syntax rules determine which forms of command language syntax are
grammatically acceptable.

Glossary
Standalone Configuration

744

Target Program

The program you are developing for your product. It is also called user
program.

Target System

the circuitry where the emulator probe is connected (typically a
microprocessor-based system under development).

Target System Memory

storage that is present in the target system.

Terminal Interface

the command interface present inside the HP 64700 Series emulators
that is used when the emulator is connected to a simple data terminal.
This interface provides on-line help, command recall, macros, and
other features which provide for easy command entry from a terminal.

Trace

a collection of states captured synchronously by the analyzer.

Trigger

the condition that identifies a reference state within an analyzer trace
measurement.

Trigger also refers to the analyzer signal that becomes active when the
trigger condition is found. The trigger signals are called trig1 and trig2.
They are bidirectional signal lines that can be used to coordinate
measurement activity between emulators and analyzers installed in the
instrumentation card cage, and between instruments connected to the
BNC on the rear panel of the card cage. For details of how to
configure and use trig1 and trig2, refer to the chapter on "Tasks you can
do with the deep analyzer" in this manual, and the chapter on making
coordinated measurements in your emulator/analyzer manual(s).

Note that there is delay when you use trig1 and/or trig2 for
measurement coordination. For example, you may specify that the
emulator break to its monitor program when it receives trig1 from the
analyzer. Several states may be executed in the emulator between the

Glossary
Target Program

745

time the analyzer recognizes its trigger condition, generates trig1,
delivers trig1 to the emulator, and the emulator responds to trig1 by
breaking to its monitor program.

Uploading

the transfer of emulation or target system memory contents to a host
computer.

Unlocked Exit

one of two methods used to leave the high level (graphical or softkey)
interface and return to the host computer operating system. An
unlocked exit command allows you to exit the high level interface and
re-enter later with the default configuration. (See also Locked Exit.)
This is not available in the Terminal Interface.

User Program

Another name for your target program (the program you are developing
for your product.

Glossary
Uploading

746

Viewport

see Window.

Wait States

extra microprocessor clock cycles that increase the total time of a bus
cycle. Wait states are typically used when slower memory is
implemented.

Widget

an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets.

Window

a specified rectangular area of virtual space shown on the display in
which data can be observed.

X Resource Specification

a resource name and value. The resource name identifies the element
whose appearance or behavior is to be defined, and the value specifies
how the element should look or behave.

1K Analyzer

in this manual, "1K analyzer" refers to the HP 64703, HP 64704, and
HP 64706 Emulation-Bus analyzers with 1K trace memories.

Glossary
Viewport

747

748

Index

A absolute file, 446
absolute, glossary definition of, 733
access size (target memory), 337
action keys, 6

custom, 562
custom for support of M68360 Companion Mode, 189
operation and use, 76
with command files, 562
with entry buffer, 74, 76

activities occurring in windows, 49, 51
activity measurements (SPMT), 283-285

additional symbols for address, 297
confidence level, 298
error tolerance, 298
interpreting reports, 296
mean, 296
relative and absolute counts, 297
standard deviation, 296
symbols within range, 297
trace command setup, 288

address
mapping details of a single address, 380
mappings in the MMU, supervisor/user, 379
not range command, 239
range file format for SPMT measurements, 290
translation details of a single address, 183
values, 238

address range command
range command, 239

addresses
how they are affected when the MMU is on, 376
logical vs physical explained, 370
overlapping, effect on deMMUer, 386
physical only in trace list, what to check, 364

alternative paths to command files, 98

749

altitude specifications, 595
analyzer

arm emulation on signal from BNC, 277
arm emulation on signal from CMB, 277
drive emulation trigger signal to BNC, 274
drive emulation trigger signal to CMB, 273
introduction, 198
trace at EXECUTE, 269
trigger one with another, 279

analyzer clock speed, glossary definition of, 734
app-defaults directory

HP 9000 computers, 604
Sun SPARCsystem computers, 604

application resource
See X resource

architectures of virtual memory, 371
ArG_lEfT with command files, 86
&ArG_iEfT, 86
1K analyzer

glossary definition of, 747

B background
tracing, 341

bases (number), 233
BBA (basis branch analysis)

storing BBA data to a file, 259
binary numbers, 233
bindings

mouse button and keyboard, 9
BKPT

interlocking breakpoint acknowledge cycles, 366
BKPT (breakpoint vector)

generally, 163
blocks (emulation memory)

size of, 320
BNC

comparison to CMB trigger, 264
connect to the rear panel, 267
connector, 262
trigger signal, 264

break
on analyzer trigger signal, 280

Index

750

break command, 154, 170, 411
breakpoint

to determine whether in software or hardware, 164
breakpoint execution causes target system to

loose sync, 366
breakpoints, 15

a breakpoint is recognized where none was set, 164
breaks on write to ROM, 336
disabling execution breakpoints, 166
displaying and seeing their status, 172
enabling, 166
generally, 163
setting temporary breakpoints, 168

bus cycle
hung bus cycle defined, 154

byte format, 140

C cables
power, 695

cables, connecting to the emulator probe, 674
can’t break into monitor example, 395
capture continuous stream of execution, 250
card cage

applying power, 695
connecting to computer or LAN, 699

cautions
antistatic precautions, 671
apply power to emulator before target system, 179
BNC accepts only TTL voltage levels, 267
CMB 9-pin port is NOT for RS-232C, 265
make sure translation tables are valid, 375
protect against static discharge, 177
rear panel, do not stand HP 64700 on, 677
turn OFF power before installing emulator probe, 177
verify pin 1 when installing emulator probe, 177

changing
column width, 221
directory context in configuration window, 309

characterization of memory, 322
class name, X applications, 602
client, X, 554
clocks

Index

751

specifications, 584
CMB (coordinated measurement bus), 262

cables needed, 265
comparison to BNC trigger, 264
EXECUTE line, 264
EXECUTE signal, 412
HP 64700 connection, 265
READY line, 263
signals, 263
specifications, 596
TRIGGER line, 263

cmb_execute command, 412
cmb_execute command, 270
code patching

example in "Getting Started" chapter, 25-28
color scheme, 556, 560, 607
columns in main display area, 557
command

summary, 410
command conventions

graphical user interface, 8
softkey interface, 5

command files
alternative directories, 88, 98
ArG_lEfT passing, 86
&ArG_lEfT, 97
command line continuation, 88
comments in, 88, 94
creating by logging commands, 88
creating by using a text editor, 90
directory path, 98
executing, 91
general information, 85-99
HP64KPATH, 88, 98
nesting, 87, 92
parameter passing, 85, 95, 97
PARMS keyword, 95
path variable, 98
pausing, 87, 93
restricted Softkey commands, 87
scripts, 86

Index

752

shell scripts, 86
shell variables, 86
specifying search of directories, 88
status line update, 87
UNIX commands, 86
wait command, 87, 93

command line, 7
Command Recall dialog box, 8
copy-and-paste from entry buffer, 75
editing commands using the keyboard, 63
editing through the popup menu, 62
editing with graphical user interface pushbuttons, 61
entering commands, 60
entry area, 7
turning it on or off, 59
turning on or off, 557

command paste mouse button, 9
command pushbuttons, 7
Command Recall dialog box operation, 77
command select mouse button, 9
commands

forwarding to other interfaces, 100
forwarding to software performance analyzer, 101
getting online help for, 65
methods to recall for edit and reuse, 63
of the emulator/analyzer interface, 400
syntax conventions in manual, 408
to execute when command is complete, 64

commands to avoid
terminal interface, 102

comments in command files, 88, 94
companion mode

setting up M68040/M68360 action keys, 189
compatible mode

glossary definition of, 735
complex trace measurements

introduction, 233-253
configuration (emulator)

background states, tracing, 341
breaks on writes to ROM, 336

configuration context

Index

753

displaying from configuration window, 310
configuration, emulator

exiting the interface, 311
loading from file, 312

modifying a section, 306
starting the interface, 304
storing, 308

configure
emulator, 115

connecting card cage to computer or LAN, 699
connecting probe to demo target system, 693
context

changing directory in configuration window, 309
displaying directory from configuration window, 310

continuing command file lines, 88
control-c, 293
coordinated measurements, 271

break_on_trigger syntax of the trace command, 272
definition, 262
set up, 265

copy
local_symbols_in, 415
memory, 415
noheader, 416
physical, 416
registers, 416
terminal interface screen to file, 103
trace, 417

copy and paste full symbol to entry buffer, 129
copy command, 413-418

options, 414
copy-and-paste

addresses, 72
from entry buffer to command line, 75
multi-window, 72, 75
symbol width, 72
to entry buffer, 71

copying to a file or printer, 81-82
COUNT option to trace command, 419-420
count states, 244
count time, 244

Index

754

counter overflow, glossary definition of, 736
current working directory

displaying, 131
to change the context, 132

current working symbol
displaying, 131
to change the context, 132

cursor pushbuttons, 8
custom M68040 action keys for M68360

companion mode, to set up, 189

D data communications
specifications, 596

data range command, 239
data values, 238
data values, displaying, 19
debugger

forwarding commands to, 100
opening an interface window, 58

decimal numbers, 233
deep analyzer

glossary definition of, 737
definitions of terms, 733-747
deMMUer

command options, 384
detailed discussion, 383-391
how it is loaded by the emulator, 385
how to enable, 384
how to load reverse translations, 384
its reverse translation table, 388
keepint it up to date, 386
out of resources, what to check, 363
places strange addresses in trace list, 386
programming in a static memory system, 229
resource limitations, 388
restrictions when using, 386
seeing present reverse translations, 384

demo
starting, 12-13

demo program
introduction, 113
loading, 118

Index

755

demo target system
connecting the emulator probe, 693

demos, setting up, 565-567
depth of memory

how to obtain different depths, 672
dequeuer

how it works, 215
device table file, 13, 53
dialog box, 76

Command Recall, operation, 77
Directory Selection, operation, 77
Entry Buffer Recall, operation, 74, 77
File Selection, operation, 77
Modify Register, operation, 77
Settings Display Modes, operation, 77
Symbol Selection, operation, 77

dialog box, trace options, 210
directory

alternatives for command files, 88
directory context

changing in configuration window, 309
displaying from configuration window, 310

Directory Selection dialog box operation, 77
disable

synchronous measurements, 270
display

global_symbols, 423
local_symbols_in, 423
MMU options to display command, 431-433
of single address mapped by MMU, 380
of table details at a logical address, 382
of the terminal interface screen, 103
physical, 423
registers, 423
simulated_io, 424
software_breakpoints, 424
to return to the previous mnemonic display, 144

display area, 7
columns, 557
lines, 557-558

display command

Index

756

memory mnemonic, 14
options, 421-426

display data command, 134
display global_symbols command, 125
display local_symbols_in command, 126
display memory command, 140-143, 146
display memory options to display command, 427-430
display memory repetitively command, 146
display modes

setting, 174
display modes dialog box

details of, 175
display pod_command command, 103, 106
display software_breakpoints command, 172
display status command, 203
display trace absolute command, 217
display trace absolute status binary command, 217
display trace absolute status hex command, 217
display trace absolute status mnemonic command, 217
display trace command, 201, 209-228, 257
display trace count absolute command, 222
display trace count command, 222
display trace count relative command, 222
display trace depth command, 227
display trace dequeue off command, 215
display trace dequeue on command, 215
display trace disassemble_from_line_number command, 212

align_data_from_line option, 215
options, 213

display trace mnemonic command, 212
display trace offset_by command, 224
display trace option to display diagram, 434-438
displaying

registers, 159
the present MMU mappings, 377

don’t care digits, 234
duration measurements (SPMT), 286

average time, 299
confidence level, 300
error tolerance, 300
interpreting reports, 299

Index

757

maximum time, 299
minimum time, 299
number of intervals, 299
prefetch and recursion considerations, 286
selecting, 291
standard deviation, 299
trace command setup, 289

dynamic virtual memory systems, 371

E editing
file, 557
file at address, 557

editing files in the interfaces, 120
emul700, command to start the emulator/analyzer interface, 53
emulation

configuration, 451
emulation analyzer

trace signals, 235
emulation memory

block size, 320
emulation memory map used by deMMUer, 389
emulation memory modules

installing, 689
emulator

break execution on signal from BNC, 276
break execution on signal from CMB, 275
configuration, 115
configuring the, 302
device table file, 13, 53
how it loads the deMMUer, 385
in-circuit use, 177-179
installing/updating firmware, 726
introduction, 112-115
multiple start/stop, 269-270
performance verification, 718

emulator configuration
break processor on write to ROM, 336
exiting the configuration interface, 311
loading from file, 312
modifying a configuration section, 306
starting the configuration interface, 304
storing, 308

Index

758

target memory access size, 337
trace background/foreground operation, 341

emulator probe
connecting the cables, 674
connecting to demo target system, 693
precautions, 177

emulator/analyzer interface
executing command file at startup, 55
exiting a single window, 83
exiting all windows, ending the session, 84
opening additional windows, 57
running in multiple windows, 54
seeing status before startup, 52
starting, 52-56
starting with default option, 54
unlocking interface that was left locked, 56

enabling
synchronous measurements, 269
the MMU, 374
the MMU in the emulator, 180-186

end command
options, 439-440

entering graphical/softkey interface commands, 60
entry buffer, 7

address copy-and-paste to, 72
clearing, 71
copy and paste a full symbol name into, 129
copy-and-paste to, 71
copy-and-paste value to the command line, 75
Entry Buffer Recall dialog box, 7
Entry Buffer Recall dialog box, operation, 74
multi-window copy-and-paste from, 75
multi-window copy-and-paste to, 72
operation and use of, 74
recall pushbutton, 7
recalling entries, 74
symbol width and copy-and-paste to, 72
text entry, 71
to recall values, 74
with action keys, 74, 76
with pulldown menus, 74

Index

759

Entry Buffer Recall dialog box operation, 77
environment variables

setting, 107
environment variables (UNIX)

PATH, 53
equates, 236

for MC68040, 236
eram, memory characterization, 322
erom, memory characterization, 322
error log

how to display it, 66
error messages

emulator, 503-551
event log

how to display it, 66
event_log, 57
example

can’t break into monitor, 395
exchange part, defined, 722
EXECUTE

CMB signal, 264
tracing at, 269

executing command files, 91
execution breakpoints

disabling, 166
displaying and seeing their status, 172
enabling, 166
setting (temporary breakpoints), 168

exiting a single window in the interface, 83
exiting the emulator/analyzer interface, 83
expressions, 233
expressions (ÅEXPRÅ)

options, 441-443

F FCODE
command options, 444

file
copying or printing, 81-82
emulator configuration, 308
emulator configuration load, 312

file formats
address ranges for SPMT measurements, 290

Index

760

time ranges for SPMT measurements, 290
File Selection dialog box operation, 77
firmware

installing/updating on the emulator, 726
version number, 730

floating-point number form, 145
foreground monitor

mapping it for use with MC68040 MMU, 349-351
tracing its execution, 341

forwarding commands to other interfaces, 100
FPU

used with MC68EC040 and MC68LC040, 187
function codes

mapping memory, 328
function codes used in translation tables, 374

G global symbols, 14, 234, 423
displaying, 125
initializing the SPMT measurement with, 291

glossary, 733-747
graphical user interface, 6

command conventions, 8
command descriptions, 400
entering commands, 60
how to use it, 47
to use its special command features, 67

guarded memory access when using MMU, 393
guarded memory accesses, 322

H halt of system when using MMU, 394
hand pointer, 7, 70
hardware

HP 9000 memory needs, 668
HP 9000 minimum performance, 668
HP 9000 minimums overview, 668
SPARCsystem memory needs, 669
SPARCsystem minimum performance, 669
SPARCsystem minimums overview, 669

hardware enable for the MMU, 374
help

terminal interface commands, 106
help command, 65, 106

Index

761

options, 445
hexadecimal numbers, 234
high level interface

using pod commands within, 250
HP 64700

internal lines, 271-277
HP 64700 Operating Environment, minimum version, 668-669
HP 64783 emulator

features, vi
HP 64783A emulator

description, v
HP 9000

700 series Motif libraries, 668
HP-UX minimum version, 668
installing software, 700-706
minimum system requirements overview, 668

HP-UX CMD, 414
HP-UX, minimum version, 668
HP64KPATH, 88
HP64KPATH and command files, 98
humidity specifications, 595
hung bus cycle, 154

I in-circuit emulator use
introduction, 177-179

input scheme, 556, 607
installation, 668-669

hardware, 670-698
how to verify it is correct, 713-721
HP 9000 software, 700-706
of optional memory modules, 672
placing boards in the card cage, 677
SPARCsystem software, 707-712
verifying installation of memory modules, 720

installing/updating emulator firmware, 726
instance name, X applications, 601-602
interactive measurements, 271
interface

graphical user, 6
how to use the graphical or softkey interface, 47
if it won’t start, 42
softkey, 4

Index

762

the SPARCsystem softkey interface, 569
interface, emulator configuration

exiting, 311
modifying a section, 306
starting, 304

interfaces
forwarding commands to other interfaces, 100

interlocking breakpoint acknowledge cycles, 366
inverse video

graphical interface demo/tutorial files, 566

K keyboard
accelerators, 70
focus policy, 69

keyboard bindings, 9

L label scheme, 556, 560, 607
LAN

connecting the card cage, 699
LANG environment variable, 607
LD_LIBRARY_PATH environment variable, 710
libraries, Motif for HP 9000/700, 668
lines in main display area, 557-558
list of replaceable parts, 722-724
listing the present MMU mappings, 377
load command, 116

options, 446-448
load configuration democfg command, 118
load demo command, 118
load symbols command, 124
load trace command, 257
load trace_spec command, 254, 256
loading and storing

introduction, 116-122
local symbols, 234, 415, 423

displaying, 126
initializing the performance measurement with, 292

locked interface
to unlock the interface, 56

log_commands command
options, 449

logging commands to a command file, 88, 90

Index

763

logical address
definition of, 371
table details, 382
viewing translation details, 183

logical-to-physical mappings, to view, 181
long word format, 142

M M68360 Companion Mode
setting up M68040/M68360 action keys, 189

mapping memory, 320-329
mappings, logical-to-physical, to view, 181
maximum trace depth, 244
MC68EC040 and MC68LC040

performance measurements of FPU instructions, 187
special considerations when including an FPU, 187
testing floating-point libraries, 187

memory, 415, 452
characterization of, 322
display in byte format, 140
display in long word format, 142
display repetitively, 146
displaying in floating-point number format, 145
displaying in mnemonic format, 143
displaying in real number format, 145
displaying in word format, 141
displaying options, 427
mapping, 320-329
modifying, 147
re-assignment of emulation memory blocks in mapper, 327
redisplay locations, 146

memory activity measurements (SPMT), 283, 296
Memory contents listed as asterisk (*), 415
memory displays

selecting source/symbol displays in, 174
memory management systems supported, 371
memory map, how it is used by deMMUer, 389
memory mapping

block size, 320
including transfer cache inhibit in a range, 328
resolution, 320

memory modules
installing on the emulation probe, 689

Index

764

verifying installation, 720
memory modules, how to install, 672
memory recommendations

HP 9000, 668
SPARCsystem, 669

menu, popup menu in trace list, 211
menus

hand pointer means popup, 7, 70
message on status line, its meaning, 50
mixing pod commands with high level commands, 250
MMU

discussion of special problems, 392-398
displaying options, 431-433
enabled, how it affects the analyzer, 229-232
enabling in MC68040, 180
how is it enabled, 374
how it affects command composition, 376
mapping 1:1 for use with MC68040, 349-351
mapping details of a single address, 380
restrictions when using, 375
using the emulator when the MMU is enabled, 180-186
where is it located, 373

MMU mappings
how the emulator obtains them, 378
listing the present mappings, 377
modifying for monitor, 395
obtaining a shorter list of, 378

mmu tables
status information in detail, 381

mnemonic display
how to return to the previous display, 144

mnemonic format, 143
mnemonic memory display, 14
modify

configuration, 451
interactive measurement specification, 273
keyboard_to_simio, 452
memory, 452
register, 453
registers, 161
software_breakpoints, 453

Index

765

modify command
options, 450-456

modify configuration command, 115, 271, 273-277
modify interactive measurement specification?, 274-277
modify memory command, 147
Modify Register dialog box operation, 77
modify software_breakpoints clear command, 170
modify software_breakpoints disable command, 166
modify software_breakpoints enable command, 166
modify software_breakpoints set command, 166, 168
module duration measurements (SPMT), 286
module usage measurements (SPMT), 286
monitor

break on analyzer trigger signal, 280
break to, 154
to map 1:1 for use with MC68040 MMU, 349-351

Motif, HP 9000/700 requirements, 668
mouse button bindings, 9
mouse buttons, 9
multi-window

copy-and-paste from entry buffer, 75
copy-and-paste to entry buffer, 72

N nesting command files, 87, 92
ÅNORMALÅ key, 409, 441
NOT TAKEN in trace list, 216
notes

CMB EXECUTE and TRIGGER signals, 264
CMB interaction does not affect cross-triggering, 269
re-assignment of emulation memory blocks by mapper, 327
step command doesn’t work when CMB enabled, 269

number bases, 233
numerical values, 233

O octal numbers, 233
offset addresses in trace list, 224
offset_by used in mnemonic displays, 143
operating system

accessing, 107-109
HP 64700 Series minimum version, 668-669
HP-UX minimum version, 668
SunOS minimum version, 669

Index

766

operators, 234
bitwise AND, 234
bitwise OR, 234
integer, 234
unary one’s complement, 234
unary two’s complement, 234

out of deMMUer resources
how to avoid this problem, 390
things to check, 363

overflow, glossary definition of, 740
overlapping ranges, how they affect deMMUer, 386

P parameters to command files, 85, 95, 97
parent symbols, how to display, 128
parts list, 722-724
paste mouse button, 9
patching code

example in "Getting Started" chapter, 25-28
PATH, UNIX environment variable, 53
perf.out file, 457
perf.out, SPMT output file, 292-295
perf32, SPMT report generator utility, 282, 293-294

interpreting reports, 296, 299
options, 295
using the, 295

performance measurements, 281-300
absolute information, 296
activity measurements, 283-285
adding traces, 292
duration, 286
ending, 294, 457
how they are made, 282
initialize options, 458-459
initializing, 289
initializing, default, 289
initializing, duration measurements, 291
initializing, user defined ranges, 290
initializing, with global symbols, 291
initializing, with local symbols, 292
memory activity, 283, 296
module duration, 286
module usage, 286

Index

767

prefetch and recursion considerations, 286
program activity, 283, 296
relative information, 296
restoring the current measurement, 292
run options, 460
running, 293
SPA for more capability, 282
trace command setup, 288
trace counting time, 288
trace display depth, 288

performance verification of emulator, 718
performance verification procedure, 718
permanent software breakpoints

how to set, 167
physical address space, tracing execution in, 232
physical addresses defined, 371
physical addresses in trace list, check list, 364
physical-logical mappings, to view, 181
platform

HP 9000 memory needs, 668
HP 9000 minimum performance, 668
SPARCsystem memory needs, 669
SPARCsystem minimum performance, 669

platform scheme, 556, 606
pod commands used in high level interface, 250
pod_command ©commandª command, 104
pod_command command, 106, 445

options, 461-462
pod_command keyboard command, 104
popup menu in trace list, 211
popup menus

hand pointer indicates presence, 7, 70
how they map to the command line, 406
how to choose an item, 70

power cables
connecting, 695
correct type, 695

power failure during firmware update, 731
power-on

emulator, 179
target system, 179

Index

768

prefetch correction in SPMT, 286
prestore qualifier, 246
prestore qualifier, glossary definition of, 742
printing

copying files to a printer, 81-82
probe

connecting the cables, 674
connecting to demo target system, 693
dimensions, 594

problems
a discussion for the MMU, 392-398
analyzer won’t trigger, 358
can’t break to monitor after MMU enabled, 366
deMMUer out of resources, 363-364
desired interface won’t start, 42
DMA problem, 362
emulation reset problem, 362
emulator won’t work in target system, 359
multiple guarded memory accesses, 359
negative time or negative states in trace, 358
physical memory addresses in trace list, 364-365
problem types and their solutions, 353
solving quick start problems, 41-44
trouble mapping memory, 361
unexplained states in the trace list, 357
you suspect the emulator is broken, 360

processor
accessing memory resources, 134-149
reset, 158
stepping, 155

processor run controls
introduction, 150-158

processor type, 53
progflash, 727-729

progflash example, 728
program activity measurements (SPMT), 283, 296
program counter

mnemonic memory display, 15
programs

building, 113
displaying data structures, 134

Index

769

loading, 116
running, 150
storing, 116, 119

pulldown menu item
how items map to the command line, 401
using the keyboard, 69
using the mouse, 67-68

pushbutton select mouse button, 9
pws command, 131

Q QUALIFIER parameter
options, 463-465

qualifier, glossary definition of, 742
quick start

 solving problems, 41-44

R RAM, mapping emulation or target, 322
READY

CMB signal, 263
real number form, 145
recall buffer, 7

columns, 563
initial content, 563-564
lines, 563
recalling entries, 74

recursion in SPMT measurements, 286
redisplay memory locations, 146
registers, 416, 423, 453

displaying, 20
modify, 161
to view and modify, 159-162

relative, glossary definition of, 742
release_system, end command option, 308
repeat the previous trace command, 249
reset command, 158

options, 466
reset trace display defaults, 225
resolution, memory mapper, 320
resource

See X resource
RESOURCE_MANAGER property, 604-605
restart terms, 241

Index

770

ROM
mapping emulation or target, 322
writes to, 322

run command, 150
options, 467-468

run from reset command, 150
run from transfer_address command, 150

S scheme files (for X resources), 555, 606-608
color scheme, 556, 560, 607
custom, 560-561, 608
input scheme, 556, 607
label scheme, 556, 560, 607
platform scheme, 556, 606
size scheme, 556, 607

scripts with command files, 86
scroll bar, 7
select mouse button, 9
sequence definition, 233
sequencing and windowing specification, 243
SEQUENCING parameter

options, 469-470
server, X, 554, 604
set command, 107, 209-228

options, 471-476
set default command, 225
set source off command, 220
set source on command, 220
set source only command, 220
set symbols all command, 218
set symbols high command, 218
set symbols low command, 218
set symbols off command, 218
set symbols on, 143
set symbols on command, 123-133, 218
set update command, 146
set width label command, 221
set width mnemonic command, 221
set width source command, 221
Settings Display Modes dialog box operation, 77
shell scripts with command files, 86
shell variables with command files, 86

Index

771

should analyzer drive or receive trig2?, 277
should BNC drive or receive Trig1?, 274, 276
should BNC drive or receive trig2?, 277
should CMBT drive or receive trig1?, 273-275
should CMBT drive or receive trig2?, 277
sig INT, 293
signals

CMB, 263
simulated I/O, 302, 424, 452
simultaneous program run

start, 278
single-step, 155
size scheme, 556, 607
softkey interface, 4

command conventions, 5
command descriptions, 400
entering commands, 60
getting online help on commands, 65
how to use it, 47
introduction to using, 48
manipulating the display with control keys, 80
SPARCsystem, 570

softkey pushbuttons, 7
software

breakpoints, 424, 453
installation for HP 9000, 700-706
installation for SPARCsystems, 707-712

software breakpoints
clearing all breakpoints, 172

software breakpoints
clearing, 170

software enable for the MMU, 375
software performance analyzer

comparison to SPMT, 282
forwarding commands to, 101
opening a measurement window, 58

software performance measurements
See performance measurements

source lines
display in trace list, 220
memory display, 136-137

Index

772

trace display, 136-137
source/symbols in displays, 174
SPARCsystem

assembler defaults, 581
installing software, 707-712
keyboard template, 575
librarian defaults, 582
linker defaults, 581
minimum system requirements overview, 669
setting up the softkey interface, 571
softkey interface introduction, 570, 578
SunOS minimum version, 669
using Microtec commands, 580
using Microtec Language Tools, 579-582
using the keyboard, 572-574

SPARCsystem softkey interface, 569
specifications

altitude, 595
clock, 584
CMB, 596
data communications, 596
humidity, 595
probe dimensions, 594
temperature, 595
trigger in/out, 595
weight, 594

specify command
options, 477-478

specify run command, 269
specify run disable command, 270
specify trace command, 269
specify trace dequeueing options, 215
specify trace disassembly options, 213
SPMT (Software Performance Measurement Tool)

See performance measurements
SPMT measurements using recursion, 286

SPMT measurements with prefetch correction, 286
SRU (Symbolic Retrieval Utilities), 123
srubuild, 123
srubuild command, 113
start

Index

773

simultaneous program run, 278
states

change the number available for display, 227
static discharge, protecting the emulator probe against, 177
static memory system, loadig deMMUer, 229
static virtual memory system, 371
status

seeing status before interface startup, 52
status information in MMU table displays, 381
status line, 7

update with command files, 87
status line (display), 57
status line message, its meaning, 50
status range command, 239
status values, 238
step command, 16, 150-158

options, 479-480
step from command, 155
step silently command, 155
stop_trace command, 201

options, 481
storage qualifier, 245

defining, 208
store command, 119

options, 482-483
store qualifier, glossary definition of, 744
store trace command, 255
store trace_spec command, 254, 256
storing and loading

introduction, 116-122
strange addresses in trace from deMMUer, 386
summary of commands, 410
SunOS, minimum version, 669
switching

directory context in configuration window, 309
symbol database

loading, 124
symbol handling, 123
Symbol Selection dialog box operation, 77
symbols, 234

displaying in memory and traces, 138

Index

774

displaying in trace list, 218
displaying the parent symbol, 128
entering, 130
introduction, 123-133

symbols (ÅSYMBÅ), 484-491
symbols that don’t agree with code

correct by offsetting addresses, 143
synchronous measurements, 269

disabling, 270
starting, 270

syntax
command conventions in manual, 408
conventions, 408

system requirements
HP 64700 minimum version, 668-669
HP 9000 overview, 668
HP-UX minimum version, 668
OSF/Motif HP 9000/700 requirements, 668
SPARCsystem overview, 669
SunOS minimum version, 669

systems, virtual memory explained, 371

T table details for a single logical address, 185, 382
table displays

MMU status information in detail, 381
TAKEN, NOT TAKEN, and ?TAKEN? in trace list, 216
target memory

access size, 337
target system

RAM and ROM, 322
target system looses sync during breakpoint

execution, 366
target system probe

installation, 177
temperature specifications, 595
temporary software breakpoints

setting, 168
terminal interface

 commands to avoid, 102
commands used in high level interface, 250
copying screen to a file, 103
defined, 102-106

Index

775

displaying screen, 103
entering commands, 104
getting help, 106

terms and their definitions, 733-747
time range file format (SPMT measurements), 290
trace, 417

at EXECUTE, 269
continuous stream of execution, 250
count states, 244
count time, 244
display options, 434-438
display status, 203
displaying count information, 222
displaying without disassembly, 217
introduction, 199-208
loading data, 257
loading specifications, 256
modify specifications, 248
on program halt, 247
repeat the previous command, 249
reset display defaults, 225
restoring data, 254-257
restoring specifications, 254-257
saving data, 254-257
saving specifications, 254-257
specify sequence, 240
starting, 200
stopping, 201
storing data, 255

trace about command, 207
trace after command, 207
trace again command, 249, 256
trace arm_trig2 command, 277
trace before command, 207
trace break_on_trigger command, 272
trace command, 200, 206, 208, 269

options, 492-495
setting up for SPMT measurements, 288
to edit and execute the last trace command, 205

trace counting anystate command, 244
trace counting command, 244

Index

776

trace counting off command, 222, 244
trace counting time command, 244
trace depth

how to change, 204
trace dequeueing

specifying options, 215
trace disassembly

specifying options, 213
trace display depth, SPMT measurements, 288
trace enable command

options, 242
trace expression

range, 239
trace expressions

address values, 238
data values, 238
status values, 238

trace find_sequence command, 240-241
trace list

disassembly, 212
display around specific line number, 226
display source lines, 220
displaying, 201, 209-228
move through, 225
offset addresses, 224
popup menu, 211

trace modify_command command, 248
trace on_halt command, 247
trace only command, 245
trace options dialog box, 210
trace prestore anything command, 246
trace prestore command, 246
trace signals

emulation analyzer, 235
trace windowing, 242
tracing background operation, 341
tram, memory characterization, 322
translation details of single logical address, 183
translation of single address through MMU, 380
translation table details for a logical addr, 185
trigger

Index

777

BNC signal, 264
CMB signal, 263
how to specify for a trace, 207
in/out specifications, 595
one analyzer with another, 279
parameter, 496-497

trigger definition, 233
trigger position

setting, 207
trigger qualifier

defining, 206
trigger signals

options
trom, memory characterization, 322

troubleshooting, 721
tutorials, setting up, 565-567

U undefined software breakpoint when using MMU, 395
<UNIX_COMMAND>

options, 498
UNIX commands

entering, 108
using in command files, 86

using the softkey interface
introduction, 48

V values, 233
verifying emulator performance, 718
verifying installation of memory modules, 720
version, firmware, 730

W wait command
options, 499-500
with command files, 87, 93

warnings, power must be OFF during installation, 677
weight specifications, 594
widget resource

See X resource
WINDOW parameter

options, 501-502
windowing and sequencing specification, 243
windows

Index

778

maximum number you can use, 49
opening additional emulator/analyzer, 57
running the emulator/analyzer interface in multiple, 54

word format, 141
workstation

HP 9000 memory needs, 668
HP 9000 minimum performance, 668
SPARCsystem memory needs, 669
SPARCsystem minimum performance, 669

write to ROM break, 336

X X client, 554
X resource, 554

$XAPPLRESDIR directory, 605
$XENVIRONMENT variable, 605
.Xdefaults file, 604
/usr/hp64000/lib/X11/HP64_schemes, 607
app-defaults file, 604
class name for applications, 602
class name for widgets, 602
command line options, 605
commonly modified graphical interface resources, 556
defined, 601-603
general form, 601
instance name for applications, 602
instance name for widgets, 601
loading order, 605
modifying resources, generally, 556-559
RESOURCE_MANAGER property, 605
scheme file system directory, 607
scheme files, Graphical User Interface, 606-608
scheme files, named, 607
schemes, forcing interface to use certain, 606
Softkey.BW, 607
Softkey.Color, 607
Softkey.Input, 607
Softkey.Label, 607
Softkey.Large, 607
Softkey.Small, 607
wildcard character, 602
xrdb, 605
xrm command line option, 605

Index

779

X server, 554, 604
X Window System, 54

Index

780

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Warning Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	The HP 64783A/B Emulator
	In This Book
	Contents
	Quick Start Guide
	Getting Started
	Solving Quick Start Problems

	Using The Emulator
	Using the Emulator/Analyzer Interface
	Using the Emulator
	Using the Emulation-Bus Analyzer
	Making Coordinated Measurements
	Making Software Performance Measurements
	Configuring the Emulator
	Solving Problems

	Reference
	Using Memory Management
	Emulator Commands
	Emulator Error Messages
	Setting X Resources
	The SPARCsystem Graphical User Interface and Softkey Interface
	Microtec Language Tools Used With MC68040 Emulators
	Specifications and Characteristics

	Concept Guide
	X Resources and the Graphical User Interface

	Installation and Service Guide
	Connecting the Emulator to a Target System
	Installation and Service
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

